Nymphoides peltata (S.G. Gmel.) Kuntze

Common Name: Yellow floating-heart

Synonyms and Other Names:

Limnanthemum peltatum S.G. Gmel., Nymphoides nymphaeoides (L.) Britton, yellow floating-heart, yellow floatingheart, floating heart, fringed water lily, entire marshwort




Lyn Gettys - UF/IFASCopyright Info


Lyn Gettys - UF/IFASCopyright Info

Identification:  

Stem/Roots: Nymphoides peltata is a rooted, perennial species with long branched stolons (up to 2 meters) that lie just below the water surface. Multi-leaved "plantlets" are produced at the nodes along with roots.

Leaves: Leaves are floating, round to heart-shaped (cordate) (3-12 cm in diameter) which resemble those of waterlilies (Godfrey and Wooten 1981; Newman 2000). Leaves are green to yellow-green and have slightly wavy margins. Undersides of leaves are often purple. 

Flowers: Two to five bright yellow, five-petaled flowers (2-4 cm in diameter) arise from each node as simple umbels with shallowly fringed petals borne above the water surface. Plants flower between May and October depending on water temperature (Godfrey and Wooten 1981; Sivarajan and Joseph 1993). 

Fruit/Seeds: Each flower produces one beaked capsule (2.5 cm), dispersing few to many smooth, flat, shiny seeds with margins of stiff hairs (Sivarajan and Joseph 1993).

Look-a-likes: Nymphoides cordata little floatingheart; Nuphar variegata yellow water lily


Size: 2 meters average stem length (Sivarajan and Joseph 1993)


Native Range: Eastern Asia and the Mediterranean (Stuckey 1973)


Nonindigenous Occurrences: The earliest introduction of N. peltata in the US was in Winchester, Massachusetts in 1882, and as early as 1891, N. peltata was sold in the United States as a water garden plant (Stuckey 1973; Les and Mehrhoff 1999).

  • Arizona: Guevavi Ranch Pond in Upper Santa Cruz drainage (University of Arizona Herbarium 2008)
  • Arkansas: Lake Wedington in Illinois drainage (Stuckey 1973)
  • California: Trout Lake in South Fork American drainage (Consortium of California Herbaria 2014) 
  • Connecticut: Housatonic (Center for Invasive Species and Ecosystem Health 2015), Lower Connecticut, Shetucket (University of Connecticut 2011), and Quinebaug (Northeast Aquatic Plant Management Society 2009) drainages
  • District of Columbia: US Fish Commission ponds in Middle Potomac-Anacostia-Occoquan drainage (Stuckey 1973)
  • Florida: Near Lake Livingston and an Orlando retention pond in Kissimmee drainage (University of Connecticut 2011)
  • Idaho: Emmett Park pond and the Payette River in Payette drainage (Center for Invasive Species and Ecosystem Health 2015)
  • Illinois: Cahokia-Joachim (Missouri Botanical Garden 2007), Lower Rock (Stuckey 1973), Middle Wabash-Busseron, Shoal (Loyola University Chicago 2013), and Upper Kaskaskia (University of Connecticut 2011) drainages
  • Indiana: Maxinkuckee Conservation Club pond in Tippecanoe drainage (Stuckey 1973)
  • Louisiana: in Gretna in East Central Louisiana Coastal drainage (Stuckey 1973)
  • Maine: private pond in Maine Coastal drainage (Center for Invasive Species and Ecosystem Health 2015)
  • Massachusetts: Charles, Nashua, and Westfield drainages (IPANE 2001)
  • Michigan: University of Michigan Dearborn Environmental Study Area pond in Detroit drainage (Kucher 2015)
  • Mississippi: small private pond in Hattiesburg of Lower Leaf drainage (Stuckey 1973)
  • Missouri: Cahokia-Joachim and Upper St. Francis drainages, and Newton County (Stuckey 1973)
  • Nebraska: Benson Park Lake in Omaha of Big Papillion-Mosquito drainage (Steve Schainost, NE Game and Parks Commission, pers. comm.)
  • New Jersey: Elmer Pond in Elmer of Cohansey-Maurice drainage (Stuckey 1973)
  • New York: Hudson-Hoosic, Lower Hudson, Middle Hudson, Mohawk, Rondout (Stuckey 1973), Lake Champlain, Southern Long Island (Scott Kishbaugh NY DEC, pers. comm.), Lake George, and Mettawee River (Anderson 2009) drainages
  • North Carolina: pond South of Crows Creek of Haw drainage (Wright et al. 2006)
  • Ohio: Conneaut River of Chautauqua-Conneaut drainage (Mills et al. 1993), and Delaware (Cooperrider 1995) County
  • Oklahoma: Bois D'arc-Island (Nelson and Couch 1985), Lower Washita, and Upper Little (Stuckey 1973) drainages
  • Oregon: Applegate (Freeman 2008), Mckenzie, North Umpqua (Glen Miller, OR Dept. of Ag., pers. comm.), Tualatin (Center for Invasive Species and Ecosystem Health 2015), and Upper Willamette (iMapInvasives 2012) drainages
  • Pennsylvania: Middle Delaware-Musconetcong (University of Connecticut 2011), Schuylkill (Stuckey 1973), and Upper Susquehanna-Tunkhannock (Pennsylvania Flora Database 2011) drainages
  • Rhode Island: Tiverton Four Corners of Narragansett drainage (IPANE 2001)
  • Tennessee: Lake Cheston in Sewanee of Upper Elk drainage (Center for Invasive Species and Ecosystem Health 2015), and Montgomery and Stewart Counties (USDA 2008)
  • Texas: College Station of Navasota drainage, and San Patricio County (USDA 2008)
  • Vermont: Lake Champlain (Stuckey 1973), Mettawee River (Countryman 1970), and Otter Creek (University of Alabama Biodiversity and Systematics 2007) drainages
  • Virginia: private farm pond of Middle Potomac-Anacostia-Occoquan drainage (Wright et al. 2006), and Rappahannock County (Virginia Botanical Associates 2007)
  • Washington: Hangman, Lower Columbia, Lower Willamette, Nooksack (University of Washington Burke Museum 2007), Lower Spokane (Stuckey 1973), Lower Yakima (Parsons 2007), and Strait of Georgia (University of Connecticut 2011) drainages 
  • Wisconsin: Lake Gordon of Peshtigo drainage (Michigan State University 2015), and UW-Madison Botany Pond of Upper Rock drainage (Wisconsin Dept of Natural Resources 2010)



Ecology: Nymphoides peltata is a perennial herb that grows in lakes, ponds, swamps and channels with slow-moving water (Campbell et al. 2010, Grosse and Mevi-Schutz 1987, IL DNR 2005). Nymphoides peltata can grow in water 0.5-4.0 m deep and it tolerates anaerobic environments (Grosse and Mevi-Schutz 1987, OISAP 2013). This species can also survive on mudflats (Campbell et al. 2010). The growing season for is this species is April – late October; leaves have a 23 – 43 day life span (IL DNR 2005). Nymphoides peltata overwinters as dormant rhizomes (IL DNR 2005).

The small fruits contain hairy seeds that float in the water and can attach to animals (Benson et al. 2004, IL DNR 2005). Research by Cook (1990) shows dispersal mechanisms may include transport by waterfowl as well as chain-like rafts of floating seed. This species can also reproduce vegetatively; plant fragments (from nodes and leaves) and rhizomes can develop into new plants (MISIN 2013, OSIAP 2013).


Means of Introduction: Commonly cultivated as an ornamental species for ponds, N. peltata has been both accidentally and intentionally released into lakes and rivers with some nuisance populations becoming established (Benson et al. 2004). Secondary infestations may result as seed and fragments of plant segments disperse downstream or within a lake (Cook 1990; MISIN 2013).


Status: Established where mentioned above.


Great Lakes Impacts: Nymphoides peltata has a moderate environmental impact in the Great Lakes.
Realized:
Nymphoides peltata can form dense floating mats of vegetation that block sunlight from reaching native plants and algae (IL DNR 2005, Lui et al. 2010, OISAP 2013). Depending on the extent of the yellow floating heart population, the algae population could decline and disrupt the food web (Kelly and Maguire 2009).

The reduction in native plant species degrades the habitat and may reduce access to food for fish and wildlife (IL DNR 2005, OISAP 2013). If the population of yellow floating heart is large enough, fish and other wildlife may be forced to relocate (CEH 2004).
Dense stands of N. peltata can cause slow-moving water to become stagnant and the water beneath the mats to have a low oxygen concentration (DiTomaso and Healey 2003, IL DNR 2005, Lui et al. 2010, WI DNR 2012). Dense surface mats of N. peltata can hinder the air exchange between the water’s surface and the atmosphere (Kelly and Maguire 2009). These areas of stagnant waters can be an ideal location for mosquitos to breed (OISAP 2013).

Potential:
In large populations of yellow floating heart, sedimentation levels increase and could alter nearby hydrology (Kelly and Maguire 2009). In New England, dense stands of N. peltata have blocked waterways (IPANE 2013).

There is little or no evidence to support that Nymphoides peltata has significant socio-economic impacts in the Great Lakes.
Potential:
In locations outside the Great Lakes, dense mats of yellow floating heart have interfered with or even prevented recreational boating, canoeing, angling, water skiing, and swimming (CEH 2004, Lui et al. 2010, WI DNR 2012). The reduction in aesthetic and recreational value can lead to a decline in nearby waterfront property (Kelly and Maguire 2009).

Nymphoides peltata has a moderate beneficial effect in the Great Lakes.
Realized:
Nymphoides peltata is a popular ornamental plant for outdoor water gardens and is easily purchased via the internet or by mail-order (Benson et al. 2004, IL DNR 2005, OISAP 2013).

Potential:
Nymphoides peltata
has the ability to move nitrogen and phosphorus up from the sediment into the aboveground biomass and back down into the root structure during the winter. This ability regenerates the nitrogen and phosphorus levels in the sediment (Brock et al. 1983).


Management: Regulations (pertaining to the Great Lakes)
Nymphoides peltata is prohibited in Illinois, Michigan, and Wisconsin (GLPANS 2008). The New York Invasive Species Council ranks this species as posing a high ecological risk, and recommends that it be prohibited within the state (New York Invasive Species Council 2010).

The Great Lakes Life & Wildlife Commission has not found N. peltata in their ceded territories, but recommend immediate control upon detection (Falck and Garske 2003).

Note: Check federal, state/provincial, and local regulations for the most up-to-date information.

Control

Biological
There are no known biological control methods for this species (CEH 2004).

Physical
Hand-pulling and mechanical removal is possible because the stems are easily cut by hand tools (CEH 2004, MISIN 2013). Hand raking or using a rope and grapnel is effective when the bottom sediments are loose (CEH 2004). All plants pieces should be removed because new plants can grow from broken fragments and/or the decomposing plant material could decrease the oxygen levels in the water (CEH 2004, Kelly and Maguire 2009). Booms or nets can be used to catch and remove drifting plant materials (Kelly and Maguire 2009). Even with multiple harvests, 100% control is unlikely (CEH 2004).

Chemical
Aquatic labeled formulations of herbicides containing the active ingredient glyphosate provide best herbicide control for this speices.  The herbicide must be applied to the leaf surface when there is a minimal chance of rain or wave washoff.  Requires at least 4-6 hours of contact time to ensure optimal control.  Use of spray adjuvant is recommended. Usually requires several applications to be effective.  

Note: Check state/provincial and local regulations for the most up-to-date information regarding permits for control methods. Follow all label instructions.


Remarks: Plants such as Hydrilla verticillata can hitchhike with ornamental species when mail-ordered.


References: (click for full references)

Anderson, L.C. (curator). 2009. Herbarium Specimen Voucher Data, Florida State University (FSU), Herbarium. Florida State University, Tallahassee, FL. http://herbarium.bio.fsu.edu/.

Benson, A. J., C.C. Jacono, P.L. Fuller, E. R. McKercher., and M. M. Richerson. 2004. Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5. U.S. Fish and Wildlife Service, Arlington, Va. 145 pp.

Brock, T.C.M., M.C.M. Bongaerts, G.J.M.A. Heijnen, and J. H. F. G. Heijthuijsen. 1983. Nitrogen and phosphorus accumulation and cycling by Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae). Aquatic Botany 17(3—4):189—214.

Brock, T.C.M., and G. Van der Velde. 1996. Aquatic macroinvertebrate community structure of a Nymphoides pelata-dominated and macrophyte-free site in an oxbow lake. Netherlands Journal of Aquatic Ecology 30(2-3):151-163.

Campbell, S., P. Higman, B. Slaughter, and E. Schools. 2010. A Field Guide to Invasive Plants of Aquatic and Wetland Habitats for Michigan. Michigan DNRE, Michigan State University Extension, Michigan Natural Features Inventory. 90 pp.

Center for Invasive Species and Ecosystem Health. 2015. EDDMapS: Early detection and distribution mapping system. The University of Georgia, Tifton, GA. http://www.eddmaps.org.

Centre for Ecology & Hydrology (CEH). 2004. Information Sheet 6: Fringed Waterlily. Natural Environment Research Council, Centre for Aquatic Plant Management. 2 pp.

Consortium of California Herbaria. 2014. Consortium of California Herbaria. Consortium of California Herbaria, Berkeley, CA. http://www.gbif.org/dataset/4fa894f4-b6c6-4ec0-b816-9bb03b3ca106. Created on 01/10/2014. Accessed on 11/20/2015.

Cook, C. D. K. 1990. Seed dispersal of Nymphoides peltata (S.G. Gmelin) O. Kuntze (Menyanthaceae) Aquatic Botany. 37:352-340.

Cooperrider, T.S. 1995. The Dicotyledoneae of Ohio. Part 2: Linaceae through Campanulaceae. Ohio State University Press, Columbus, OH.

DiTomaso, J.M. and E.A. Healey. 2003. Aquatic and riparian weeds of the West.  University of California, Agriculture and Natural Resources.  Oakland, California. 

Falck, M. and S. Garske. 2003. Invasive Non-native Plant Management During 2002. Great Lakes Indian Fish & Wildlife Commission (GLIFWC), Odanah, WI. 68 pp.

Freeman, M. 2008. New local threat revealed. Mail Tribune, Medford, OR. 2008 (December 13). http://www.mailtribune.com/apps/pbcs.dll/article?AID=/20081213/NEWS/812130304/-1/NEWS02.

Godfrey, R.K., and J.W. Wooten. 1981. Aquatic and Wetland Plants of the Southeastern United States, dicotyledons. University of Georgia, Athens, GA.

Great Lakes Panel of Aquatic Nuisance Species (GLPANS). 2008. Prohibitied Species in the Great Lakes Region. 14 pp.

Grosse, W. and J. Mevi-Schutz. 1987. A beneficial gas transport system in Nymphoides peltata. American Journal of Botany 74(6): 947—952.

Illinois Department of Natural Resources (IL DNR). 2005. Aquatic Invasive Species: Yellow Floating Heart. 3 pp. Available http://www.in.gov/dnr/files/YELLOW_FLOATING_HEART.pdf.

iMapInvasives. 2012. iMapInvasives Oregon. The Nature Conservancy. http://www.imapinvasives.org/. Accessed on 04/09/2015.

Invasive Plant Atlas of New England (IPANE). 2013. Yellow floating heart: Nymphoides peltata (Gmel.) Kuntze. Available http://www.eddmaps.org/ipane/ipanespecies/aquatics/Nymphoides_peltata.htm. Accessed 29 April 2013.

IPANE. 2001. Invasive Plant Atlas of New England (IPANE) at the University of Connecticut online database. http://invasives.eeb.uconn.edu/ipane/.

Kelly, J. and C. M. Maguire. 2009. Fringed Water Lily (Nymphoides peltata) Invasive Species Action Plan. Northern Ireland Environmental Ageny (NIEA) and National Parks and Wildlife Service (NPWS) as part of Invasive Species Ireland. 14 pp.

Kucher, K. 2015. DNR removes high-threat aquatic invasive plant from Dearborn pond. Michigan Department of Natural Resources. Detroit, MI. http://www.michigan.gov/dnr/0,4570,7-153--365098--,00.html. Created on 09/18/2015. Accessed on 09/21/2015.

Les, D.H., and L.J. Mehrhoff. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1(2/3):281-300.

Loyola University Chicago. 2013. Illinois Database of Aquatic Non-native Species. GISIN, Fort Collins, CO. http://gisin.org/cwis438/websites/GISINDirectory/Occurrence_Result.php?ProjectID=391&WebSiteID=4. Created on 05/13/2015. Accessed on 05/13/2015.

Lui, K., M. Butler, M. Allen, E. Snyder, J. da Silva, B. Brownson, and A. Ecclestone. 2010. Field Guide to Aqautic Invasive Species: Identification, collection and reporting of aquatic invasive in Ontario waters. Minstry of Natural Resources, Ontario, Canada. 201 pp.

Michigan State University. 2015. Midwest Invasive Species Information Network (MISIN). Michigan State University, East Lansing, MI. http://www.misin.msu.edu/browse/. Accessed on 12/04/2015.

Midwest Invasive Species Information Network (MISIN). 2013. Yellow floatingheart (Nymphoides peltata). Available http://www.misin.msu.edu/facts/detail.php?id=182. Accessed 29 April 2013.

Mills, E.L., J.H. Leach, J.T. Carlton, and C.L. Secor. 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19(1):1-54.

Missouri Botanical Garden. 2007. Missouri Botanical Garden. Missouri Botanical Garden, St. Louis, MO. http://www.gbif.org/dataset/7bd65a7a-f762-11e1-a439-00145eb45e9a. Created on 04/02/2007. Accessed on 11/20/2015.

Nelson, E.N., and R.W. Couch. 1985. Aquatic Plants of Oklahoma I: Submersed, Floating-leaved, and selected emergent macrophytes. Oral Roberts University, Tulsa, OK.

New York Invasive Species Council. 2010. Final report: a regulatory system for non-native species. Department of Environmental Conservation, Albany, NY. 131 pp.

Newman, J. 2000. Fringed waterlily. Centre for Aquatic Plant Management, Reading, Berkshire, UK.

Northeast Aquatic Plant Management Society. 2009. Nor'Easter Newsletters. Northeast Aquatic Plant Management Society.

Ontario's Invasive Species Awareness Program (OISAP). 2013. Yellow Floating Heart: Nymphoides peltata. Available http://www.invadingspecies.com/invaders/plants-aquatic/yellow-floating-heart/. Accessed 29 April 2013.

Ornduff, R. 1970. Cytogeography of Nymphoides (Menyanthaceae). Taxon. 19:715-719.

Parsons, J. 2007. Washington Aquatic Plant Monitoring Database. Washington Department of Ecology, Lacey, WA. http://www.ecy.wa.gov/programs/eap/lakes/aquaticplants/index.html.

Pennsylvania Flora Database. 2011. Pennsylvania Flora Project. Morris Arboretum at the University of Pennsylvania (MOAR), Philadelphia, PA. http://www.paflora.org.

Reznicek, A.A. 1994. The disjunct coastal plain flora in the Great Lakes region. Biological Conservation. 68:203-215.

Richardson, R., L. Hipkins, J. Wethstone, R. Chandren, and R. Ritter. 2006. The Mid-Atlantic Aquatic Plant Management Newsletter. NCSU Aquatic Plant Management Program. 2 (3):3 pp. http://www.weedscience.ncsu.edu/aquaticweeds/newsletter.html (accessed 20 December 2007).

Sivarajan, V.V. and K.T. Joseph. 1993. The genus Nymphoides Seguier (Menyanthaceae) in India. Aquatic Botany. 45:145-170.

Stuckey, R.L. 1973. The introduction and distribution of Nymphoides peltatum (Menyanthaceae) in North America. Bartonia 42:14-23.

Takagawa, S., J. Nishihiro and I. Washitani. 2005.  Safe sites for establishment of Nymphoides peltata seedlings for recovering the population from the soil seed bank.  Ecological Research. 20(6): 661-667.

United States Department of Agriculture (USDA). 2008. PLANTS Database. National Plant Data Center. http://plants.usda.gov.

University of Alabama Biodiversity and Systematics. 2007. Herbarium (UNA). University of Alabama, Tuscaloosa, AL. http://www.gbif.org/dataset/84f9770e-f762-11e1-a439-00145eb45e9a. Created on 04/03/2007. Accessed on 11/20/2015.

University of Arizona Herbarium. 2008. UA Herbarium. University of Arizona, Tucson, AZ. http://www.gbif.org/dataset/95b97882-f762-11e1-a439-00145eb45e9a. Created on 09/10/2008. Accessed on 11/20/2015.

University of Connecticut. 2011. CONN. University of Connecticut, Storrs, CT. http://www.gbif.org/dataset/5288946d-5fcf-4b53-8fd3-74f4cc6b53fc. Created on 09/08/2011. Accessed on 11/20/2015.

University of Washington Burke Museum. 2007. Vascular Plant Collection - University of Washington Herbarium (WTU). University of Washington, Seattle, WA. http://www.gbif.org/dataset/8310f570-f762-11e1-a439-00145eb45e9a. Created on 04/03/2007. Accessed on 11/20/2015.

Virginia Botanical Associates. 2007. Digital Atlas of the Virginia Flora. http://vaplantatlas.org/.

Wisconsin Department of Natural Resources (WI DNR). 2012. Yellow floating heart (Nymphoides peltata). Available http://dnr.wi.gov/topic/invasives/fact/yellowfloatingheart.html. Accessed 29 April 2013.

Wright, R., C. Tumer, C. Williams, and T. Sprenkle. 2006. WSSI Scientists Discover Non-Native Plants New To Virginia. Wetland Studies and Solutions, Inc. Gainesville, VA. 14 (7). http://www.wetlandstudies.com/fieldNotesArticle.cfm?id=25.


Author: Pfingsten, I.A., D.D. Thayer, L. Berent, and V. Howard.


Contributing Agencies:
NOAA GLRI Logo


Revision Date: 3/23/2016


Citation for this information:
Pfingsten, I.A., D.D. Thayer, L. Berent, and V. Howard., 2017, Nymphoides peltata (S.G. Gmel.) Kuntze: U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI, https://nas.er.usgs.gov/queries/GreatLakes/FactSheet.aspx?NoCache=12%2F10%2F2013+7%3A53%3A28+PM&SpeciesID=243&State=&HUCNumber=, Revision Date: 3/23/2016, Access Date: 10/23/2017


This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.