Current research on the environmental impact of Alnus glutinosa in the Great Lakes is inadequate to support proper assessment.
Realized:
Alnus glutinosa has been identified as an invasive plant capable of displacing desirable vegetation (Herron et al. 2007, NatureServe 2010). It is associated with a number of nitrogen-fixing actinomycetes fungi that directly increase soil nitrogen concentrations (Hall et al. 1979). In general, black alder is an ornamental species, but its use in the Great Lakes varies. It may be discouraged for use in natural areas due to its reported ability to form monocultures (Eckel 2003, NatureServe 2010). With the potential to dominate wetland communities, the Ontario Invasive Plants Working Group has labeled A. glutinosa as a top priority for management (Havinga 2000).
Potential:
Black alder is a pioneer species capable of modifying the environment by colonizing exposed soils, fixing nitrogen, and producing copious amounts of litter (Funk 1990, USDA NRCS 2006). Black alder leaf litter easily leaches water-soluble organic substances that may alter soil conditions and impact nearby plants (Funk 1990). Areas planted with black alder at a mine restoration site in Kentucky had twice as much leaf litter and higher concentrations of soluble salts than areas without black alder. This leaf litter also resulted in significantly more acidic spring soil (Plass 1977).
Results from a study conducted by Vogel et al. (1997) suggest that as atmospheric carbon dioxide concentration increases, nitrogen fixing species such as black alder will be able to fix more atmospheric nitrogen. This will lead to an increase in nitrogen concentration (above current fixation rates) in leaves and, ultimately, in soils via leaf litter decomposition (Vogel et al. 1997).
Black alder could further impact water courses by de-oxygenating the water, shading out other species, and degrading habitat. Black alder’s dense root system is capable of trapping sediment and subsequently altering water flow in wetland ecosystems (Funk 1990). European alder hybridizes readily with many other alders (Funk 1990).
There is little or no evidence to support that Alnus glutinosa has significant socio-economic impacts in the Great Lakes.
Current research on the beneficial effects of Alnus glutinosa in the Great Lakes is inadequate to support proper assessment.
Potential:
This tree has both ornamental and practical value. While it is not considered a commercially-valuable hardwood, Alnus glutinosa is kept by some US nurseries to meet the demand for use in orchards (as a windbreak) and at mine revegetation sites (Mikola 1958, USDA NRCS 2006). However, the wood may be used for carving and the leaves for medicinal purposes (Mills et al. 1993). Within its native range, black alder is used for furniture, wooden-ware, cooperage, charcoal, and wood fiber industries (Genys 1988).
In a supercritical carbon dioxide extraction of A. glutinosa, β-sitosterol and eleven pentacyclic triterpenes were identified (Felföldi-Gáva et al. 2012). These compounds have a variety of potential pharmacological applications, including stunting cancer tumor growth and protecting against the side effects of chemotherapy and radiation treatment (Laszvzyk 2009, MDidea 2010). This group of compounds has also been found to have anti-inflammatory, antioxidant, antimicrobial, and antiviral properties, as well as cardiovascular benefits (MDidea 2010, Patocka 2003). One identified compound, betulinic acid, has been demonstrated to have antiviral properties against HIV (DeClercq 2000).
Black alder acts as a significant source of nitrogen that typically becomes available for other species and has been shown to increase growth in nearby trees (Funk 1990, Mikola 1958, Plass 1977). For this reason, black alder is sometimes recommended as a nurse crop (a species interplanted with the species of interest in order to assist in its growth) for numerous hardwood tree species (Bohanek and Groninger 2005, Plass 1977, Shepperd and Jones 1985, Vogel 1981).
Due to its ability to fix nitrogen and its capability to colonize acidic soils, black alder can aid in the restoration of disturbed sites and spoil banks (Funk 1990). In an evaluation of the soil remediation ability of trees, A. glutinosa not only caused the largest accumulation of organic carbon and total nitrogen of all examined tree species, but also was associated with the most acidic soils (Chodak and Niklinska 2010). When interplanted on coal mine reclamation sites, black alder’s presence was associated with the doubling in size of adjacent yellow-poplar (Liriodendron tulipifera), white ash (Fraxinus americana), and American sycamore (Plantanus occidentalis) (Vogel 1981). In a seven year study of shale mining reclamation sites in Estonia, black alder stands showed high survival and productivity rates, as well as reduced soil pH and phosphorous concentration (Kuznetsova et al. 2011). Notably, black alder may escape from reclaimed mine soils and grow naturally in surrounding areas.
Black alder may provide food for deer, rabbits, hares, and several bird species. Black alder seeds are released from cones throughout the winter, potentially benefiting seed-eating birds. Additionally, black alder could improve earthworm habitat (Funk 1990).