Morone americana (Gmelin, 1789)

Common Name: White Perch

Synonyms and Other Names:


Douglas FaceyCopyright Info

Identification: Woolcott (1962); Mansueti (1964); Smith (1985); Page and Burr (1991); Jenkins and Burkhead (1994).


Size: 58 cm


Native Range: Atlantic Slope drainages from St. Lawrence-Lake Ontario drainage, Quebec, south to Pee Dee River, South Carolina (Page and Burr 1991). Populations in Lake Ontario drainage probably became established following construction of the Erie Canal. 


Great Lakes Nonindigenous Occurrences: This species has been recorded for Colorado (Everhart and Seaman 1971); Lake Michigan (Savitz et al. 1989; Mills et al. 1993), the Illinois River (Cochran and Hesse 1994; Burr et al. 1996; Irons 2002; Blodgett 1993), and the Mississippi River (Cochran and Hesse 1994; Rasmussen 1998), Illinois (Burr et al. 1996; Irons et al. 2002); Lake Michigan and several inland lakes, Indiana (Mills et al. 1993; R. Horner, personal communication; R. Robertson and D. Keller, personal communication); the Missouri River, Iowa (Hergenrader 1980; Bernstein 2001; Larson, personal communication); Hoover Pond in Kingman City Riverside Park, Cheney and Wilson reservoirs, and Browning Oxbow on the Missouri River, Kansas (Whitmore 1997; Rasmussen 1998; T. Mosher, personal communication; Goeckler, pers. comm.); inland lakes and ponds statewide except Aroostook County, Maine (Halliwell 2003); nonnative, inland waters of Massachusetts (Hartel 1992; Hartel et al. 1996; USFWS 2005); the Great Lakes, Michigan (Johnson and Evans 1990; Mills et al. 1993; Bowen, pers. comm.); Duluth Harbor, Lake Superior, Minnesota (Johnson and Evans 1990; Mills et al. 1993); Lake Contray in Buchanan County, Big Lake in Holt County, and the Missouri River in Carroll and Howard counties, in Missouri (Pflieger 1997); the Missouri River and the Platte River drainage in Nebraska (Hergenrader and Bliss 1971; Morris et al. 1974; Hergenrader 1980; Cross et al. 1986; Whitmore 1997; Rasmussen 1998) and Branched Oak Reservoir (Nebraska Parks and Game Commission); inland lakes in New Hampshire (Scarola 1973); Lake Champlain (Plosila and Nashett 1990; Good, personal communication) and the Great Lakes drainage, New York (Scott and Christie 1963; Lee et al. 1980 et seq.; Emery 1985; Smith 1985; Johnson and Evans 1990; Mills et al. 1993), including lakes Ontario and Erie, Oneida Lake, Cross Lake, and the Seneca River (Dence 1952); James, Norman, and Jordan reservoirs, North Carolina (Feiner et al. 2012); Lake Erie drainage and inland streams of Ohio (Busch et al. 1977; Trautman 1981; Smith 1985; Rasmussen 1998; Johnson and Evans 1990; Mills et al. 1993; Czypinski et al. 2001) and Cedar Point National Wildlife Refuge (USFWS 2005); Kaw and Keystone reservoirs, Oklahoma (J. Boxrucker, pers. comm.); Lake Erie, Pennsylvania (Larsen 1954; Busch et al. 1977; Johnson and Evans 1990; Page and Burr 1991; Mills et al. 1993); Lake Champlain, Vermont (Plosila and Nashett 1990; Good, personal communication). Smith Mountain Lake and Kerr Reservoir, Virginia (Jenkins and Burkhead 1994); the upper Potomac drainage, West Virginia (Cincotta, personal communication); and Lake Michigan at Green Bay, the St. Louis River estuary, Horicon National Wildlife Refuge, and Chequamegon Bay, Wisconsin (Savitz et al. 1989; Johnson and Evans 1990; Mills et al. 1993; Cochran and Hesse 1994; Czypinski et al. 2001; Associated Press 2003; Scheidegger, personal communication; USFWS 2005).

Collected in the Bay of Quinte (northeastern Lake Ontario), Ontario, Canada ( Scott 1963).


Table 1. Great Lakes region nonindigenous occurrences, the earliest and latest observations in each state/province, and the tally and names of HUCs with observations†. Names and dates are hyperlinked to their relevant specimen records. The list of references for all nonindigenous occurrences of Morone americana are found here.

Full list of USGS occurrences

State/ProvinceYear of earliest observationYear of last observationTotal HUCs with observations†HUCs with observations†
Illinois198819942Lake Michigan; Little Calumet-Galien
Indiana199819992Lake Michigan; Little Calumet-Galien
Michigan1977201712Black-Macatawa; Clinton; Detroit; Lake Erie; Lake Huron; Lake St. Clair; Lower Grand; Muskegon; Ottawa-Stony; Saginaw; St. Clair; St. Marys
Minnesota198620092Lake Superior; St. Louis
New York194620157Lake Champlain; Lake Erie; Lake Ontario; Oak Orchard-Twelvemile; Oneida; Salmon-Sandy; Seneca
Ohio195320179Ashtabula-Chagrin; Black-Rocky; Cedar-Portage; Cuyahoga; Grand; Huron-Vermilion; Lake Erie; Lower Maumee; Sandusky
Ontario19522015*
Pennsylvania195319942Chautauqua-Conneaut; Lake Erie
Vermont199820052Lake Champlain; Richelieu River
Wisconsin198420159Beartrap-Nemadji; Door-Kewaunee; Duck-Pensaukee; Lake Michigan; Lake Superior; Lower Fox; Manitowoc-Sheboygan; Milwaukee; St. Louis

Table last updated 10/19/2018

† Populations may not be currently present.

* HUCs are not listed for areas where the observation(s) cannot be approximated to a HUC (e.g. state centroids or Canadian provinces).


Means of Introduction: The first report of White Perch in the Great Lakes drainage was from Cross Lake, central New York, in 1950 (Dence 1952). The species apparently gained access to the lake via movement through the Erie Barge Canal in the 1930s and 1950s (Lee et al. 1980 et seq.; Johnson and Evans 1990; Mills et al. 1993). Scott and Christie (1963) stated that the White Perch most likely gained access to Lake Ontario via the Oswego River, as a result of spread of Hudson River populations northward and westward through the Mohawk River Valley and Erie Barge Canal. Once in Lake Ontario, it gained access to Lake Erie through the Welland Canal in 1953 and continued to spread to the upper Great Lakes (Johnson and Evans 1990; Mills et al. 1993). The first reports of westward movement through the Great Lakes are as follows: Lake Erie in 1953 (Larsen 1954), Lake St. Clair in 1977, Lake Huron in 1987 (Johnson and Evans 1990), Lake Michigan at Green Bay-Fox River, Wisconsin in May 1988 (Cochran and Hesse 1994), and Illinois waters of Lake Michigan off Chicago in September 1988 (Savitz et al. 1989). One oddity is that the first record from Lake Superior was in 1986 from Duluth Harbor-one year before the fish was found in Lake Huron, and two years before it was seen in Lake Michigan. The  Duluth Harbor population may be restricted to that location because  it is the warmest part of the lake. This population likely represents a separate introduction because it does not fit the pattern of western dispersal (Johnson and Evans 1990). In this case it is possible that the introduction occurred via ships' ballast water.

White Perch was brought from New Jersey to Nebraska in 1964, and fry produced that year in a hatchery were accidentally introduced into a reservoir that provided access to the Missouri River (Hergenrader and Bliss 1971). White Perch has been stocked intentionally in other areas for sportfishing. In Kansas, fish found at Browning Oxbow on the Missouri River are believed to have come from Nebraska. The species was not recorded from Missouri River in Missouri until the 1990s (Pflieger 1997). The source of the fish in the two Kansas reservoirs is a result of stock contamination from a striped bass stocking (Mosher, personal communication). White Perch were stocked in West Virginia in the early 1900s (Cincotta, personal communication) and are being illegally stocked by individuals in inland lakes in Indiana (R. Robertson and D. Keller, personal communication).


Status: Established in all five Great Lakes and their surrounding states, as well as in Kentucky, Massachusetts, Missouri, Nebraska, New Hampshire, North Carolina, and Vermont. Current status in Colorado and Kansas is unknown. 


Great Lakes Impacts: Morone americana has a high environmental impact in the Great Lakes.

Realized:
Fish eggs are an important component of the diet of white perch, especially in the spring months. White perch generally preys on eggs of walleye, white bass, other species, and can cannibalize its own eggs (Schaeffer and Margraf 1987). Walleye or white bass eggs can make up 100% of white perch diet depending on which fish is spawning. During a three-year study, this diet was found to be unique in that: 1) eggs were eaten for a comparatively long time; 2) they were the only significant food item eaten by adults during two of the three years; 3) large volumes were eaten per individual; and, 4) most fish were feeding. White perch also feeds heavily on minnows (Notropis spp.) (Schaeffer and Margraf 1987). Madenjian et al. (2000) hypothesized that egg predation by white perch was the most significant contributor to the large decline in white bass recruitment in Lake Erie in the 1980s.

Bur and Klarer (1991) found that a large portion of the M. americana diet in the central basin of Lake Erie consisted of zooplankton. It has been speculated that a white perch diet of Daphnia in Lake Champlain contributed to the decline of the species in this locality since white perch became established (Couture and Watzin 2008). Parrish and Margraf (1990) hypothesized that white perch compete with native yellow perch (Perca flavescens) for zooplankton. They determined that growth rates of yellow perch had declined since the invasion of white perch in Lake Erie, especially in the western basin. They also determined that the two species had considerable diet overlap and found one sample in which white perch consumed 27 percent more food than yellow perch. It has been speculated that competition between white perch and forage fishes, such as emerald shiner (Notropis atherinoides) and spottail shiner (N. hudsonius), as well as freshwater drum (Aplodinotus grunniens), is complex and may be responsible for the declines of the latter species (Parrish and Margraf 1994, Stapanian et al. 2007). Decline of these species could also affect walleye, the top predator in Lake Erie (Parrish and Margraf 1994).

Invasion of the Great Lakes brought white perch into sympatric distribution with a closely related but previously allopatric species, native white bass (Morone chrysops), allowing hybridization to occur (Todd 1986). White perch are known to hybridize with M. chrysops in western Lake Erie and in Ohio and Michigan waters (Todd 1986). Hybrids have also been reported from the Detroit River and the St. Clair River in Michigan (Todd 1986). These hybrids were first noted in western Lake Erie in the early 1980s, the same period during which white perch were increasing in this area (Todd 1986). These hybrids probably occur in other Great Lakes because the two species are sympatric in all of the lakes. However, Todd was not aware of any other locations with these hybrids, and his extensive surveys around Saginaw Bay, Lake Huron, and Lake Ontario in the mid-1980s failed to find any (Todd, personal communication). Todd (1986) provided photographs of both parent species and the hybrid and gave characteristics of each. Because these hybrids are capable of backcrossing with the parental species, and possibly producing of F2 hybrids by crossing amongst themselves (Todd 1986), they dilute the gene pool of each parent species. The white perch/white bass hybrid is the first naturally occurring Morone hybrid known (Todd 1986).

Potential:
Hybrids of M. americana and M. mississippiensis were first found in 2000 in the middle Illinois River (Irons et al. 2002). Hybridization and competition may represent another threat to the already dwindling yellow bass of that region.

Within three years of being introduced into a Nebraska reservoir, white perch had completely replaced the previously dominant black bullhead (Ameiurus melas). Species composition changed from 74% black bullhead to 70% white perch over that timeframe (Hergenrader and Bliss 1971).

Morone americana has a moderate socio-economic impact in the Great Lakes.

Realized:
The collapse of the walleye (Sander vitreus) fishery in the Bay of Quinte (on the north shore of Lake Ontario) coincided with an increase in the white perch population and may have been a result of egg predation and lack of recruitment (Schaeffer and Margraf 1987). Other recreationally/commercially important species, such as white bass (Morone chrysops), yellow perch (Perca flavescens), and species of forage fish are likely negatively affected by white perch through competition, egg predation, or hybridization (see above).

Morone americana has a high beneficial effect in the Great Lakes.

Realized:
As of 2003, it was estimated that over 500,000 lbs. of white perch are caught commercially in the U.S. and Canada each year (188,000+ lbs. in the U.S. alone), particularly in lakes Erie and Ontario (Dann and Schroeder 2003; Brown et al. 1999). This provides an estimated value of approximately $107,000 yr-1 in the U.S. and $260,000 yr-1 overall (Dann and Schroeder 2003).

Potential:
While white perch is a good food fish and could potentially be pursued recreationally, it is not as commonly exploited as a game fish (Scott and Crossman 1973). In some Great Lakes states, white perch is allowed to be caught but is largely prohibited otherwise (GLPANS 2008).

One study found that relative to available zooplankton, a disproportionately large amount of white perch diet consisted of the invasive Bythotrephes cederstroemi (Bur and Klarer 1991).


Management:  

Regulations (pertaining to the Great Lakes region)
Minnesota lists White Perch as a prohibited invasive species (MN Administrative Rules, 6216.0250 Prohibited).   In Ohio it is unlawful for any person to possess, import or sell live White Perch (OAC Chapter 1501:31-19).  Indiana (312 IAC 9-6-7) designates White Perch as an exotic fish - an individual must not import, possess, propagate, buy, sell, barter, trade, transfer, loan, or release into public or private waters live fish or recently hatched or juvenile live fish or their viable eggs or genetic material.

Note: Check federal, state/provincial, and local regulations for the most up-to-date information.

Control
For most waters, the only management recommendation for White Perch is unlimited harvest (Smith 2002).

Biological
Bottom-up control (reduction in food supply) of White Perch usually results in stunting accompanied by an increase in population so that the population consists of many small fish (Smith 2002).

Physical
There are no known physical control methods for this species.

Chemical
The IJC (2011) recommends rotenone for control of White Perch in rapid response scenarios.

Of the four chemical piscicides registered for use in the United States, antimycin A and rotenone are considered “general” piscicides, but no studies have been found of their effects on Morone americana (GLMRIS 2012).

Increasing CO2 concentrations, either by bubbling pressurized gas directly into water or by the addition of sodium bicarbonate (NaHCO3) has been used to sedate fish with minimal residual toxicity, and is a potential method of harvesting fish for removal, though maintaining adequate CO2 concentrations may be difficult in large/natural water bodies (Clearwater et al. 2008). CO2 is approved only for use as an anesthetic for cold, cool, and warm water fishes the US, not for use as euthanasia, and exposure to NaHCO3 concentration of 142-642 mg/L for 5 min. is sufficient to anaesthetize most fish (Clearwater et al. 2008).

It should be noted that chemical treatment will often lead to non-target kills, and so all options for management of a species should be adequately studied before a decision is made to use piscicides or other chemicals. Potential effects on non-target plants and organisms, including macroinvertebrates and other fishes, should always be deliberately evaluated and analyzed. The effects of combinations of management chemicals and other toxicants, whether intentional or unintentional, should be understood prior to chemical treatment.  Other non-selective alterations of water quality, such as reducing dissolved oxygen levels or altering pH, could also have a deleterious impact on native fish, invertebrates, and other fauna or flora, and their potential harmful effects should therefore be evaluated thoroughly.

Note: Check state/provincial and local regulations for the most up-to-date information regarding permits for control methods. Follow all label instructions.


Remarks: Although the White Perch was found in the Missouri River in Missouri almost to the Missouri/Iowa state border (Pflieger 1997), as of March 1998, there are no known collections in the state of Iowa (M. Konrad, personal communication). 

Feiner et al. (2012) found life history differences (e.g., growth rate, reproductive investment) across introduced populations within three large reservoirs in North Carolina representing different stages of invasion, and suggest that this plasticity allows for increased success during establishment. Feiner et al. (2013a) found that populations in the North Carolina reservoirs occupied a wide trophic niche, and suggested that niche breadth likely also aides establishment success. Pothoven and Höök (2015) found overlap in standard diet assemblages of age-0 White Perch and White Bass in Saginaw Bay, Lake Huron, indicating that complete trophic separation was not a requirement for long-term stable coexistence.

White Perch is one of the most frequently found prey items in the diet of the Double-Crested Cormorant in the southern basin of Lake Michigan (Madura and Jones 2016).


References: (click for full references)

Associated Press. 2003. The first white perch on record shows up in Chequamegon Bay. Wisconsin State Journal. Madison.com. July 25, 2003: B5.

Boxrucker, J. pers. comm. Oklahoma Department of Wildlife Conservation, Norman, OK.

Brown, R.W., M. Ebener, and T. Gorenflo. 1999. Great Lakes commercial fisheries: historical overview and prognosis for the future. In Great Lakes Fisheries Policy and Management: A Binational Perspective. Taylor, W.W., and C.P. Ferreri (Eds.). Michigan State University Press, East Lansing, MI, pp. 307-354.

Bur, M.T., and D.M. Klarer. 1991. Prey selection for the exotic cladoceran Bythotrephes cederstroemi by selected Lake Erie fishes. Journal of Great Lakes Research 17(1):85-93.

Burr, B.M., D.J. Eisenhour, K.M. Cook, C.A. Taylor, G.L. Seegert, R.W. Sauer, and E.R. Atwood. 1996. Nonnative fishes in Illinois waters: What do the records reveal? Transactions of the Illinois State Academy of Science 89(1/2):73-91.

Busch, W.N., D.H. Davies, and S.J. Nepszy. 1977. Establishment of white perch, Morone americana, in Lake Erie. Journal of the Fisheries Research Board of Canada 34:1039-1041.

Cincotta, D. – West Virginia Department of Natural Resources, Elkville.

Clearwater, S.J., C.W. Hickey, and M.L. Martin. 2008. Overview of potential piscicides and molluscicides for controlling aquatic pest species in New Zealand. Science & Technical Publishing, New Zealand Department of Conservation, Wellington, New Zealand.

Cochran, P.A., and P.J. Hesse. 1994. Observations on the white perch (Morone americana) early in its invasion of Wisconsin. Transactions of the Wisconsin Academy of Science, Arts and Letters 82:23-58.

Couture, S. C. and M. C. Watzin. 2008. Diet of invasive adult white perch (Morone americana) and their effects on the zooplankton community in Missisquoi Bay, Lake Champlain. Journal of Great Lakes Research 34(3):485-494.

Cross, F.B., R.L. Mayden, and J.D. Stewart. 1986. Fishes in the western Mississippi drainage. Pages 363-412 in C. H. Hocutt, and E. O. Wiley, editors. The Zoogeography of North American Freshwater Fishes. John Wiley and Sons, New York, NY.

Czypinski, G.D., A.K. Bowen, M.T. Weimer, A. Dextrase. 2001. Surveillance for ruffe in the Great Lakes, 2001. U.S. Fish and Wildlife Service, Ashland, WI. 36 pp.

Dann, S.L., and B.C. Schroeder. 2003. The Life of the Lakes: A Guide to the Great Lakes Fishery. Michigan Sea Grant, 56 pp.

Dence, W.A. 1952. Establishment of white perch, Morone americana, in central New York. Copeia 1952(3):200-201.

Emery, L. 1985. Review of fish introduced into the Great Lakes, 1819-1974. Great Lakes Fishery Commission Technical Report, volume 45. 31 pp.

Everhart, W.H., and W.R. Seaman. 1971. Fishes of Colorado. Colorado Game, Fish and Parks Division, Denver, CO.

Feiner, Z.S., D.D. Aday, and J.A. Rice. 2012. Phenotypic shifts in white perch life history strategy across stages of invasion. Biological Invasions 14(11):2315-2329.

Feiner, Z.S., J.A. Rice, and D.D. Aday. 2013. Trophic niche of invasive white perch and potential interactions with representative reservoir species. Transactions of the American Fisheries Society 142(3):628-641. http://dx.doi.org/10.1080/00028487.2013.763854

Feiner, Z.S., J.A. Rice, A.J. Bunch, and D.D. Aday. 2013. Trophic niche and diet overlap between invasive White Perch and resident White Bass in a southeastern reservoir. Transactions of the American Fisheries Society 142(4):912-919. http://dx.doi.org/10.1080/00028487.2013.788563.

GLMRIS. 2012. Appendix C: Inventory of Available Controls for Aquatic Nuisance Species of Concern, Chicago Area Waterway System. U.S. Army Corps of Engineers.

Good, S. - Vermont Department of Fish and Wildlife, Pittsford, VT.

Halliwell, D.B. 2003. Introduced Fish in Maine. MABP series: Focus on Freshwater Biodiversity.

Hartel, K.E. 1992. Non-native fishes known from Massachusetts freshwaters. Occasional Reports of the Museum of Comparative Zoology, Harvard University, Fish Department, Cambridge, MA. 2. September. pp. 1-9.

Hergenrader, G.L., and Q.P. Bliss. 1971. The white perch in Nebraska. Transactions of the American Fisheries Society 100(4):734-738.

Horner, R. - Fish Pathology and Aquaculture Coordinator, State of Illinois, Manito, IL. Response to NBS-G nonindigenous questionnaire. 1992.

International Joint Commission. 2011. 2009-2011 Priority Cycle Report on Binational Aquatic Invasive Species Rapid Response.  Prepared by the Binational Aquatic Invasive Species Rapid Response Work Group for the International Joint Commission. Canada and the United States.

Irons, K.S., T.M. O'Hara, M.A. McClelland, and M.A. Pegg. 2002. White perch occurrence, spread, and hybridization in the middle Illinois River, upper Mississippi River system. Transactions of the Illinois State Academy of Science 95(3):207-214.

Jenkins, R.E., and N.M. Burkhead. 1994. Freshwater fishes of Virginia. American Fisheries Society, Bethesda, MD.

Johnson, T.B., and D.O. Evans. 1990. Size-dependent winter mortality of young-of-the-year white perch: climate warming and invasion of the Laurentian Great Lakes. Transactions of the American Fisheries Society 119:301-313.

Konrad, M. – Iowa Department of Natural Resources, Des Moines.

Larsen, L. 1954. First record of the white perch (Morone americana) in Lake Erie. Copeia 1954(2):154.

Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, Jr. 1980 et seq. Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, Raleigh, NC.

Madenjian, C.P., R.L. Knight, M.T. Bur, and J.L. Forney. 2000. Reduction in recruitment of white bass in Lake Erie after invasion of white perch. Transactions of the American Fisheries Society 129(6):1340-1353.

Madura, P.T., and H.P. Jones. 2016. Invasive species sustain double-crested cormorants in southern Lake Michigan. Journal of Great Lakes Research 42(2):413-420.

Mansueti, R.J. 1964. Eggs, larvae, and young of the white perch, Roccus americanus, with comments on its ecology in the estuary. Chesapeake Science 5(1-2):3-45.

Mills, E.L., J.H. Leach, J.T. Carlton, and C.L. Secor. 1993. Exotic species in the Great Lakes: a history of biotic crisis and anthropogenic introductions. Journal of Great Lakes Research 19(1):1-54.

Morris, J., L. Morris, and L. Witt. 1974. The fishes of Nebraska. Nebraska Game and Parks Commission, Lincoln, NE.

Mosher, T. – Kansas Department of Wildlife and Parks, Emporia, KS.

Page, L.M., and B.M. Burr. 1991. A field guide to freshwater fishes of North America north of Mexico. The Peterson Field Guide Series, volume 42. Houghton Mifflin Company, Boston, MA.

Parrish, D.L., and F.J. Margraf. 1990. Interactions between white perch (Morone americana) and yellow perch (Perca flavescens) in Lake Erie as determined from feeding and growth. Canadian Journal of Fisheries and Aquatic Science 47(9):1779-1787.

Parrish, D.L., and F.J. Margraf. 1994. Spatial and temporal patterns of food use by white perch and yellow perch in Lake Erie. Journal of Freshwater Ecology 9(1):29-35.

Pflieger, W.L. 1997. The fishes of Missouri. Missouri Department of Conservation, Jefferson City, MO.

Plosila, D.S., and L.J. Nashett. 1990. First reported occurrence of white perch in Lake Champlain. New York Department of Environmental Conservation, Bureau of Fisheries. Albany, NY.

Pothoven, S.A., and T.O. Höök. 2015. Feeding ecology of invasive age-0 white perch and native white bass after two decades of co-existence in Saginaw Bay, Lake Huron. Aquatic Invasions 10(3):347-357. http://dx.doi.org/10.3391/ai.2015.10.3.10

Rasmussen, J.L. 1998. Aquatic nuisance species of the Mississippi River basin. 60th Midwest Fish and Wildlife Conference, Aquatic Nuisance Species Symposium, Dec. 7, 1998. Cincinnati, OH.

Savitz, J., C. Aiello, and L.G. Bardygula. 1989. The first record of the white perch (Morone americana) in Illinois waters of Lake Michigan. Transactions of the Illinois Academy of Science 82(1&2):57-58.

Scarola, J.F. 1973. Freshwater fishes of New Hampshire. New Hampshire Fish and Game Department, Division of Inland and Marine Fisheries.

Schaeffer, J.S., and F.J. Margraf. 1987. Predation on fish eggs by white perch, Morone americana, in western Lake Erie. Environmental Biology of Fishes 18(1):77-80.

Scheidegger, K. - Bureau of Fisheries Management, Madison, WI. Response to NBS-G non-indigenous questionnaire. 1992.

Scott, W.B., and W.J. Christie. 1963. The invasion of the lower Great Lakes by white perch, Roccus americanus (Gmelin). Journal of  Fisheries Research Board of Canada 20(5):1189-1195.

Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Bulletin 184. Fisheries Research Board of Canada, Ottawa, Ontario, Canada.

Smith, C.L. 1985. The inland fishes of New York state. New York State Department of Environmental Conservation, Albany, NY.

Smith, M.R. 2002. White Perch Management Plan. Maine Department of Fisheries and Wildlife, Division of Fisheries and Hatcheries.

Stapanian, M.A., M.T. Bur, and J.V. Adams. 2007. Temporal trends of young-of-year fishes in Lake Erie and comparison of diel sampling periods. Environmental Monitoring and Assessment 129(1-3):169-178.

Todd, T. – Great Lakes Science Center, U.S. Geological Survey, Biological Resources Division, Ann Arbor, Michigan.

Todd, T.N. 1986. Occurrence of white bass-white perch hybrids in Lake Erie. Copeia 1986(1):196-199.

Trautman, M.B. 1981. The fishes of Ohio. Ohio State University Press, Columbus, OH.

Whitmore, S. 1997. Aquatic nuisance species in Region 6 of the Fish and Wildlife Service. U.S. Fish and Wildlife Service, Great Plains Fish and Wildlife Management Assistance Office, Pierre, SD.

Woolcott, W.S. 1962. Infraspecific variation in the white perch, Roccus americanus (Gmelin). Chesapeake Science 3(2):94-113.


Author: Fuller, P., E. Maynard, D. Raikow, J. Larson, A. Fusaro, and M. Neilson


Contributing Agencies:
NOAA GLRI Logo


Revision Date: 5/14/2018


Peer Review Date: 4/1/2016


Citation for this information:
Fuller, P., E. Maynard, D. Raikow, J. Larson, A. Fusaro, and M. Neilson, 2019, Morone americana (Gmelin, 1789): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI, https://nas.er.usgs.gov/queries/greatLakes/FactSheet.aspx?SpeciesID=777&Potential=N&Type=0&HUCNumber=, Revision Date: 5/14/2018, Peer Review Date: 4/1/2016, Access Date: 3/18/2019

This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.