Nymphoides peltata has a moderate environmental impact in the Great Lakes.
Realized:
Nymphoides peltata can form dense floating mats of vegetation that block sunlight from reaching native plants and algae (IL DNR 2005, Lui et al. 2010, OISAP 2013). Depending on the extent of the yellow floating heart population, the algae population could decline and disrupt the food web (Kelly and Maguire 2009). The reduction in native plant species degrades the habitat and may reduce access to food for fish and wildlife (IL DNR 2005, OISAP 2013). If the population of yellow floating heart is large enough, fish and other wildlife may be forced to relocate (CEH 2004).
Dense stands of N. peltata can cause slow-moving water to become stagnant and the water beneath the mats to have a low oxygen concentration (DiTomaso and Healey 2003, IL DNR 2005, Lui et al. 2010, WI DNR 2012). Dense surface mats of N. peltata can hinder the air exchange between the water’s surface and the atmosphere (Kelly and Maguire 2009). These areas of stagnant waters can be an ideal location for mosquitos to breed (OISAP 2013).
Potential:
In large populations of yellow floating heart, sedimentation levels increase and could alter nearby hydrology (Kelly and Maguire 2009). In New England, dense stands of N. peltata have blocked waterways (IPANE 2013).
There is little or no evidence to support that Nymphoides peltata has significant socio-economic impacts in the Great Lakes.
Potential:
In locations outside the Great Lakes, dense mats of yellow floating heart have interfered with or even prevented recreational boating, canoeing, angling, water skiing, and swimming (CEH 2004, Lui et al. 2010, WI DNR 2012). The reduction in aesthetic and recreational value can lead to a decline in nearby waterfront property (Kelly and Maguire 2009).
Nymphoides peltata has a moderate beneficial effect in the Great Lakes.
Realized:
Nymphoides peltata is a popular ornamental plant for outdoor water gardens and is easily purchased via the internet or by mail-order (Benson et al. 2004, IL DNR 2005, OISAP 2013).
Potential:
Nymphoides peltata has the ability to move nitrogen and phosphorus up from the sediment into the aboveground biomass and back down into the root structure during the winter. This ability regenerates the nitrogen and phosphorus levels in the sediment (Brock et al. 1983).