Trapa natans L.

Common Name: Water chestnut

Synonyms and Other Names:

Trapa bispinosa Roxb., Trapa natans var. natans L., Trapa natans var. bispinosa (Roxb.) Makino, European water chestnut, water nut, horned water chestnut, water caltrop, bull nut




A. May and B. Walker at Marion Elementary SchoolCopyright Info


L.J. Mehrhoff, University of Connecticut, Bugwood.orgCopyright Info

Identification: According to Crow and Hellquist (2000):

Habit: floating, rooted, aquatic annual

Stems/Roots: submerged, flexuous stem and roots that anchor into the mud and extend upwards to the surface of the water

Leaves: rosette of floating, fan-shaped leaves, each leaf having a slightly inflated petiole (leaf stem) and dentate (tooth-like) leaf margins

Flowers: solitary, small, white flowers with four petals sprout in the center of the rosette

Fruits/Seeds: large nut with four, orthogonal, sharp spines that develop from hardened sepals

Look-a-likes: Ludwigia sedioides (Humb. & Bonpl.) H.Hara


Size: up to 16 feet in stem length (Muenscher 1944)


Native Range: Europe, Asia, and Africa (Muenscher 1944; Gleason and Cronquist 1991; Crow and Hellquist 2000).


Great Lakes Nonindigenous Occurrences: The water chestnut was first introduced to North America in the 1870s, where it is known to have been grown in a botanical garden at Harvard University in 1877. The plant had escaped cultivation and was found growing in the Charles River by 1879. The plant was introduced into Collins Lake near Scotia, NY (in the Hudson River-Mohawk River drainage) around 1884, possibly as an intentional introduction for waterfowl food or as a water garden escapee (Countryman 1970).

U.S. distribution by state and HUC8 drainage and/or county:

Connecticut: Housatonic, Lower Connecticut (Les and Capers 2012), Lower Hudson (Gibbons 2011), Quinebaug (Reid 2016), Quinnipiac (L. Dodd, USACE-ERDC, pers. comm. 2017), and Shetucket (IPANE 2001) drainages

Delaware: Centreville in Brandywine-Christina drainage (Pace and Thiers 2016)

District of Columbia: ponds of U.S. [Fish Comission], B. St. NW in Middle Potomac-Anacostia-Occoquan drainage (Pace and Thiers 2016)

Maryland: Chester-Sassafras (Batuik et al. 1992), Gunpowder-Patapsco (Hummel and Kiviat 2004), Lower Potomac (Knox 2017), and Middle Potomac-Anacostia-Occoquan (Carter and Rybicki 1994) drainages

Massachusetts: Blackstone, Housatonic, Middle Hudson (Seidler 2014), Charles (Hummel and Kiviat 2004), Chicopee, Deerfield, Lower Connecticut, Westfield (Center for Invasive Species and Ecosystem Health 2017), Concord (Mills et al. 1993), Gulf of Maine/Bay of Fundy (Olmsted 2010), Merrimack River (National Park Service 2013), Middle Connecticut (Barrington et al. 2015), Narragansett (Open Space Committee 2008), and Nashua (Shnitzler 2006) drainages

New Hampshire: Black-Ottauquechee (A. Smagula, NH DES, pers. comm. 2016), Nashua (New Hampshire Department of Environmental Services 2015), and West (Center for Invasive Species and Ecosystem Health 2017) drainages

New Jersey: Hackensack-Passaic, Mullica-Toms, Raritan, Rondout (Center for Invasive Species and Ecosystem Health 2017), Middle Delaware-Musconetcong (Smith 2009), and Sandy Hook-Staten Island (Crouse 2011) drainages

New York: Chaumont-Perch, Chenango, Hackensack-Passaic, Hudson-Hoosic, Lake Ontario, Lower Genesee, Middle Delaware-Mongaup-Brodhead, Northern Long Island, Oneida, Rondout, Salmon-Sandy, Schoharie, Southern Long Island, Upper Delaware (S. Kishbaugh, NYS DEC, pers. comm. 2015), Conewango (Lundin 2013), Hudson-Wappinger (Seigler 2014), Irondequoit-Ninemile, Middle Hudson (Titus 1994), Lake Champlain (Countryman 1970), Lower Hudson (Philbrick 2016), Mettawee River, Mohawk (Madsen 1990), Niagara (iMapInvasives 2016), Oswego (Coin Glenn 2000), Seneca (Krings 2011), and Upper Susquehanna (Hummel and Kiviat 2004) drainages

Pennsylvania: Crosswicks-Neshaminy, Lower Susquehanna-Swatara, Middle Delaware-Mongaup-Brodhead (Pennsylvania Flora Database 2011), Middle Delaware-Musconetcong, Schuylkill (Center for Invasive Species and Ecosystem Health 2017), and Upper Allegheny (iMapInvasives 2016) drainages

Rhode Island: Blackstone, Narragansett, Quinebaug (State of Rhode Island Department of Environmental Management Office of Water Resources 2015), and Pawcatuck-Wood (DeGoosh 2009) drainages

Vermont: Black-Ottauquechee (Winters and Audette 2016), Hudson-Hoosic (Hunt 2006), Lake Champlain, Mettawee River (Countryman 1970), and Otter Creek (A. Bove, VT DEC, pers. comm. 2003) drainages

Virginia: Potomac River, near Mt. Vernon in Middle Potomac-Anacostia-Occoquan drainage (Wofford et al. 2016), and a pond at Waples Mill Meadow Park in Middle Potomac-Catoctin drainage (Center for Invasive Species and Ecosystem Health 2017)


Table 1. Great Lakes region nonindigenous occurrences, the earliest and latest observations in each state/province, and the tally and names of HUCs with observations†. Names and dates are hyperlinked to their relevant specimen records. The list of references for all nonindigenous occurrences of Trapa natans are found here.

Full list of USGS occurrences

State/ProvinceYear of earliest observationYear of last observationTotal HUCs with observations†HUCs with observations†
New York1942201811Chaumont-Perch; Irondequoit-Ninemile; Lake Champlain; Lake Ontario; Lower Genesee; Mettawee River; Niagara; Oneida; Oswego; Salmon-Sandy; Seneca
Vermont194220143Lake Champlain; Mettawee River; Otter Creek

Table last updated 3/15/2019

† Populations may not be currently present.


Ecology:

Life history: each T. natans plant has 15 - 20 rosettes; each rosette can generate up to 20 seeds (Maryland Sea Grant 2012); seeds overwinter in the benthic sediments and germinate the following spring; seeds remain viable for up to 12 years (Swearingen et al. 2002).

Habitat: shallow (less than 5 meters), nutrient-rich lakes and slow-moving rivers and streams

Tolerances: pH range of 6.7 to 8.2 and alkalinity of 12 to 128 mg/L of calcium carbonate

Community interactions: fertilized by generalist insects


Means of Introduction: Typically introduced by aquarium release, escape from ornamental ponds, hitchhiking on waterfowl, or intentional plantings. Spreads either by the rosettes detaching from their stems and floating to another area, or more often by the nuts being swept by currents or waves to other parts of the lake or river (Bickley and Cory 1955; Mirick 1996; Hummel and Kiviat 2004).


Status:

Established in Connecticut, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Virginia.

Extirpated from Delaware and eradicated from the District of Columbia (Carter and Rybicki 1994).

Reports from Kentucky and West Virginia USACE reservoirs were likely mistaken identities (L. Dodd, USACE-ERDC, pers. comm. 2017).


Great Lakes Impacts: Trapa natans has a moderate environmental impact in the Great Lakes.
Realized:
Trapa natans
is a fast-growing species that forms mats of vegetation that float on the water’s surface (IPANE 2013, Swearingen et al. 2002). Given its biological structure, T. natans is able to cover the water with up to three layers of leaves (Pemberton 2002). These dense mats inhibit the growth of native aquatic species and enable water chestnut to outcompete for sunlight, nutrients, and space (IN DNR 2012, OISAP 2013, Pennsylvania Sea Grant 2012). Water chestnut is able to prevent sunlight from reaching the bottom sediments; making it especially threatening to native grasses (Naylor 2003). The introduction of T. natans leads to a reduction in plant biodiversity as it comes to dominate aquatic ecosystems (OISAP 2013, Pennsylvania Sea Grant 2012)

Trapa natans offers little nutritional value for wildlife (IPANE 2013, Pennsylvania Sea Grant 2012, VDEC 2002). Water chestnut is also capable of an allelopathic response that inhibits the growth of phytoplankton (Lui et al. 2010a). These two impacts may alter existing predator/prey relationships as native species go elsewhere to search for food.

Large infestations of T. natans can reduce water flow and even clog waterways (CANSWG 2006, Naylor 2003, Pennsylvania Sea Grant 2012). During the growing season, dense surface mats block the air exchange between the water’s surface and the atmosphere (Pennsylvania Sea Grant 2012). Caraco and Cole (2002) found that beds dominated by T. natans had dissolved oxygen levels below 2.5 mg/l about 40% of the time. Low levels of oxygen caused by the presence of this species, makes T. natans populations unsuitable for fish species and likely effects the redox reactions in bottom sediments (Caraco and Cole 2002). When water chestnut populations die and sink, the decomposition of this large amount a plant material reduces the dissolved oxygen level even further and in extreme cases, can cause fish kills (IN DNR 2012, OISAP 2013, Swearingen et al. 2002, VDEC 2002).

Potential:
Areas of stagnant water caused by dense stands of T. natans create breeding grounds for mosquitoes (Naylor 2003).

Trapa natans has a high socio-economic impact in the Great Lakes.
Realized:
Large infestations of T. natans can reduce water flow and even clog waterways (Group 2006, Naylor 2003, Pennsylvania Sea Grant 2012). Dense patches of T. natans can hinder commercial navigation (IN DNR 2012, IPANE 2013).

Infestations of water chestnut can also limit or even prevent recreational activities such as boating, fishing, and hunting (WI DNR 2012). The hard, spiny seeds can punctuate leather and can cause painful wounds to humans and animals that step on them (Haber 1999, Swearingen et al. 2012). These nuts can also wash up and accumulate along the shore; reducing the access to beaches (IN DNR 2012, OISAP 2013).

The major economic costs associated with water chestnut populations are mechanical or chemical control efforts (Naylor 2003). The Pennsylvania Department of Conservation and Natural Resources (n.d.) states that this species costs hundreds of thousands of dollars to control.

Potential:
Millions of dollars have been spent on mechanical harvesting and manual removal of T. natans populations; these programs have had limited success (Wu and Wu 2006). Vermont spent almost $500,000 in 2000 to mechanically remove water chestnut (Pennsylvania Sea Grant 2012). From 1982-2005 various state organizations spent over $5 million to control T. natans in Lake Champlain (IPANE 2013).

In Vermont, many previously fished bays of southern Lake Champlain are now inaccessible, and floating mats of T. natans can create a hazard for boaters. Large stands of water chestnut may also restrict fish farming and batfish harvesting (Gunderson and Kinnunen 2004).

Trapa natans has a moderate beneficial impact in the Great Lakes.
Realized:
This ornamental plant has been used in ponds and outdoor water gardens (Liu et al. 2010).

The fruit has historically been used to treat conditions such as rheumatism and sunburn (Lui et al. 2010a). Once cracked open, the flesh inside the nut-like fruit can be cooked, eaten raw, or used in other foods (Lui et al. 2010a, Magness et al. 1971).

Potential:
Even though this is not the water chestnut typically found in Asian cuisine, T. natans is a food source typically used in Asia (O’Neill Jr. 2006). Dried nuts can be ground into flour for baking (Sturtevant and (ed) 1972).

In an experimental study, extracts from T. natans (combined with extracts from other species) decreased pain for patients suffering from shingles (Hijikata et al. 2005). In another study, an herbal mixture containing T. natans brought symptom relief to those suffering herpes genitalis and labialis outbreaks (Hijikata et al. 2007). A peptide contained in T. natans has anti-fungal properties (Mandal et al. 2011).

The husks from T. natans can be transformed into iron-modified activated carbon; an adsorbent compound that is able to remove chromium (VI) from wastewater (Lui et al. 2010b). In experiments in India, T. natans was able to remove a significant amount of mercury from paper mill effluent (Mishra et al. 2013). Trapa natans is also able to remove nitrite from the water (Rawat et al. 2012). Trapa natans can remove metals from contaminated water (Baldisserotto et al. 2007, Rai and Sinha 2011). Unfortunately, this species stores the toxic compounds in the edible parts of the plant; reducing the ability of this species to be utilized as a food source (Rai and Sinha 2011).

Strayer et al. (2003) found increased diversity in epiphytic and benthic macroinvertebrates in T. natans populations, compared to stands of native vegetation in the Hudson River (New York). Even with this increase in biodiversity, Strayer et al. (2003) concluded that these macroinvertebrates were not available to fish because of the low oxygen concentrations. Surveys conducted by Kornijów et al. (2010) also found dense, diverse benthic communities under floating mats of T. natans containing insects, oligochaetes, crustaceans, and other taxa. However, Kornijów et al. (2010) determined that water chestnut beds provided valuable habitat for invertebrate biodiversity and production, and may contribute substantially to fish production.


Management: Regulations (pertaining to the Great Lakes)
Trapa natans is prohibited in Illinois, Michigan, Minnesota, New York, and Wisconsin (GLPANS 2008).

The Great Lakes Life & Wildlife Commission have not found T. natans in their ceded territories, but recommended immediate control upon detection (Falck and Garske 2003).

Note: Check federal, state/provincial, and local regulations for the most up-to-date information.

Control
An integrated management plan that incorporates multiple methods of control will be most effective at controlling populations of T. natans. Invaded habitats should be monitored for up to 12 years after control measures are complete to ensure that the seed bank is exhausted (PA DCNR n.d., Swearingen et al. 2002).

Biological
In its native range in China, the leaf beetle Galerucella birmanica has significant negative impacts on T. natans populations (Ding et al. 2006). However, this species has many other host species in the U.S., making it unsuitable for use as a biocontrol agent (Maryland Sea Grant 2012).

Physical
Smaller populations can be controlled by hand harvesting or raking because the roots are easily uplifted from the sediment (Naylor 2003). Larger populations, including those thick enough to clog waterways, may require the use of a large aquatic plant harvester (PA DCNR n.d.). Harvesting methods should be conducted before plants set seeds-- typically in July (Maryland Sea Grant 2012). All plant fragments, especially those containing roots, should be removed to prevent the expansion of the T. natans population (Swearingen et al. 2002). Plant fragments should be disposed of far from the water, preferably in a plastic bag (PA DCNR n.d.).

260,000 lbs. of water chestnut were removed by mechanical means and the help of over 60 volunteers from the Sassfras River (Maryland) during a three day harvest in 1999 (Naylor 2003). Mechanical removal methods have been used annually in Sodus Bay, New York since the 1960s, but the T. natans population persists (USEPA 2000). However, mechanical removal followed by an application(s) of 2,4-D was able to eradicate a population of T. natans in Maryland (Naylor 2003).

Laboratory and greenhouse studies by Wu and Wu (2006) demonstrated that ultrasonic waves of 20 kHz, aimed directly at water chestnut stems and petioles, for 10 seconds resulted in 100% plant death.

Chemical
Herbicides containing 2,4-D (both the amine and butoxy-ethyl ester formulations) have been effective in controlling T. natans (GLMRIS 2012, WI DNR 2012) Applying 2,4-D just as plants are reaching the surface of the water, in early summer, will provide the best results (USACE 2011). This compound causes minimal adverse effects on neighboring wildlife (Maryland Sea Grant 2012).

Herbicides containing triclopyr are also effective at controlling T. natans, but it is non-selective and may harm other plant life (GLMRIS 2012).

The growth and expansion of water chestnut populations can also be repressed if light attenuating dyes are applied prior to plant germination (GLMRIS 2012, USACE 2011).

Note: Check state/provincial and local regulations for the most up-to-date information regarding permits for control methods. Follow all label instructions.


Remarks: Unfortunately, an unrelated edible aquatic plant, Eleocharis dulcis (Burm.f.) Trin. ex Henschel, a sedge in the Cyperaceae, is also called water chestnut. The corm of E. dulcis is the familiar water chestnut, or Chinese water chestnut, sold in cans and commonly served in Chinese restaurants.

Originally placed in Trapaceae, T. natans is now considered in the Lythraceae family based on molecular evidence (Graham 2005).


References: (click for full references)

Baldisserotto, C., L. Ferroni, E. Anfuso, A. Pagnoni, M.P. Fasulo, and S. Pancaldi. 2007. Responses of Trapa natans L. floating laminae to high concentrations of manganese. Protoplasma 231(1—2): 65—82.

Batuik, R., R. Orth, K. Moore, W. Dennison, J. Stevenson, L. Staver, V. Carger, N. Rybicki, R. Hickman, S. Kollar, S. Bieber, and P. Heasly. 1992. Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Techinical Synthesis. US Environmental Protection Agency, Annapolis, MD.

Besha, J.A., and W.D. Countryman. 1980. Feasibility assessment of anaerobic digestion of European water chestnuts (Trapa natans L.). New York State Energy Research and Development Authority 80-13, Albany, NY.

Bickley, W.E., and E.N. Cory. 1955. Water caltrop in the Chesapeake Bay. Association of Southeastern Biologists Bulletin 2:27-28.

Bove, A., and T. Hunt. 1997. Water chestnut: An exotic plant invasion in Lake Champlain. Page 12 in Balcom, N.C, ed. Proceedings of the Second Northeast Conference on Nonindigenous Aquatic Nuisance Species, 18-19 April 1997, Burlington, VT. Connecticut Sea Grant College Program Publication CTSG-97-02. Groton, CT.

Campbell, S., P. Higman, B. Slaughter, and E. Schools. 2010. A Field Guide to Invasive Plants of Aquatic and Wetland Habitats for Michigan. Michigan DNRE, Michigan State University Extension, Michigan Natural Features Inventory. 90 pp.

Caraco, N. F. and J. J. Cole. 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecological Applications 12(5): 1496—1509.

Carter, V., and N.B. Rybicki. 1994. Invasions and declines of submersed macrophytes in the tidal Potomac River and Estuary, the Currituck Sound-Back Bay system, and the Pamlico River Estuary. Journal of Lake and Reservoir Management 10(1):39-48. http://www.dtic.mil/dtic/tr/fulltext/u2/a293325.pdf#page=36.

Center for Invasive Species and Ecosystem Health. 2015. EDDMapS: Early detection and distribution mapping system. The University of Georgia, Tifton, GA. http://www.eddmaps.org.

Connecticut Aquatic Nuisance Species Working Group (CANSWG). 2006. Connecticut Aquatic Nuisance Species Management Plan. State of Connecticut Department of Environmental Protection. 117 pp.

Coote, T.W., R.E. Schmidt, and N. Caraco. 2001. Use of a periodically anoxic Trapa natans (water-chestnut) bed by fishes in the Hudson River. Page 20 pp in Waldman, J.R., and W.C. Nieder, eds. Final reports of the Tibor T. Polgar fellowship program, 2000. Hudson River Foundation. New York, NY.

Countryman, W.D. 1970. The history, spread and present distribution of some immigrant aquatic weeds in New England. Hyacinth Control Journal 8(2):50-52.

Countryman, W.D. 1978. Nuisance Aquatic Plants in Lake Champlain. New England River Basins Commission, Burlington, VT.

Crow, G.E., and C.B. Hellquist. 2000. Aquatic and Wetland Plants of Northeastern North America. Volume 1. Pteridophytes, Gymnosperms and Angiosperms: Dicotyledons. Volume 1. The University of Wisconsin Press, Madison, WI.

DeGoosh, K. 2009. Nor'Easter State Updates for Rhode Island. Northeast Aquatic Plant Management Society. Kingston, RI. Fall 2009:12.

Ding, J., B. Blossey, Y. Du, and F. Zheng. 2006. Galerucella birmanica (Coleoptera: Chrysomelidae), a promising potential biological control agent of water chestnut, Trapa natans. Biological Control 36(1): 80—90.

Falck, M. and S. Garske. 2003. Invasive Non-native Plant Management During 2002. Great Lakes Indian Fish & Wildlife Commission (GLIFWC), Odanah, WI. 68 pp.

Field Museum. 2012. Field Museum of Natural History (Botany) Seed Plant Collection. Field Museum, Chicago, IL. http://www.gbif.org/dataset/90c853e6-56bd-480b-8e8f-6285c3f8d42b. Created on 07/11/2012. Accessed on 11/20/2015.

Fernald M.L. 1950. Gray’s Manual of Botany. 8th ed. American Book Company, N.Y. 

Findlay, S., K. Schoeberl, and B. Wagner. 1989. Abundance, composition, and dynamics of the invertebrate fauna of a tidal freshwater wetland. Journal of the North American Benthological Society 8(2):140-148.

Gleason, H.A. 1957. The New Britton and Brown Illustrated Flora of the Northeastern U.S. and Adjacent Canada. New York Botanical Gardens, N.Y.

Gleason, H.A., and Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. second edition. The New York Botanical Garden, Bronx, New York.

Global Invasive Species Database. 2008. http://www.issg.org/database

Graham, S.A., J. Hall, K. Sytsma, and S. Shi. 2005. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences 166(6):995-1017.

Great Lakes and Mississippi River Interbasin Study Team, The. 2012. Inventory of Available Controls for Aquatic Nuisance Species of Concern: Chicago Area Waterway System. U.S. Army Corps of Engineers. 46 pp.

Great Lakes Panel of Aquatic Nuisance Species (GLPANS). 2008. Prohibitied Species in the Great Lakes Region. 14 pp

Gunderson, J. L. and R. E. Kinnunen. 2004. Aquatic Invasive Species – Hazard Analysis and Critical Control Point (AIS-HAACP) Training Curriculum. Second Edition. Michigan Sea Grant, Minnesota Sea Grant. 91 pp.

Gwathmey, J.H. 1945. Potomac River cleared of floating islands. Maryland Conservationist 22(1):21-23.

Hijikata, Y., A. Yasuhara, and Y. Sahashi. 2005. Effect of an herbal formula containing Ganoderma lucidum on reduction of Herpes zoster pain: a pilot clinical trial. The American Journal of Chinese Medicine 33(4): 517—523.

Hijikata, Y., S. Yamada, and A. Yasuhara. 2007. Herbal mixtures containing the mushroom Ganoderma lucidum improve recovery time in patients with Herpes genitalis and labialis. The Journal of Alternative and Complementary Medicine 13(9): 985—987.

Hotchkiss, N. 1972. Common Marsh, Underwater and Floating-leaved Plants of the United States and Canada. Dover Publications, Inc, New York.

Hummel, M., and E. Kiviat. 2004. Review of World Literature on Water Chestnut with Implications for Management in North America. Journal of Aquatic Plant Management 42:17-28. http://apms.org/wp/wp-content/uploads/2012/10/v42p17.pdf.

Hunt, T. 2006. 2005 Water Chestnut Management Program: Lake Champlain and inland waters of Vermont. Aquatic Invaders 17(1):18-19. www.aquaticinvaders.org.

iMapInvasives. 2015. iMapInvasives New York. iMapInvaives. www.nyimapinvasives.org. Created on 07/08/2015. Accessed on 07/08/2015.

Indiana Department of Natural Resources (IN DNR). 2012. Aquatic Invasive Species: Water Chestnut. 3pp. Available http://www.in.gov/dnr/files/WATER_CHESTNUT.pdf.

Invasive Plant Atlas of New England (IPANE). 2013. Water Chestnut. Available http://www.eddmaps.org/ipane/ipanespecies/aquatics/Trapa_natans.htm Accessed 2 May 2013.

IPANE. 2001. Invasive Plant Atlas of New England (IPANE) at the University of Connecticut online database. http://invasives.eeb.uconn.edu/ipane/.

Kiviat, E. 1993. Under the spreading water-chestnut. News From Hudsonia 9(1):1-6.

Kornijów, R., D.L. Strayer, and N. F. Caraco. 2010. Macroinvertebrate communities of hypoxic habitats created by an invasive plant (Trapa natans) in the freshwater tidal Hudson River. Fundamental and Applied Limnology Arhiv für Hydrobiologi 176(3): 199—207.

Lui, K., M. Butler, M. Allen, E. Snyder, J. da Silva, B. Brownson, and A. Ecclestone. 2010a. Field Guide to Aqautic Invasive Species: Identification, collection and reporting of aquatic invasive in Ontario waters. Minstry of Natural Resources, Ontario, Canada. 201 pp.

Lui, W., J. Zhang, C. Zhang, Y. Wang, and Y. Li. 2010b. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk. Chemical Engineering 162(2): 677—684.

Madsen, J.D. 1990. Waterchestnut (Trapa natans L.) research in Watervliet Reservoir, 1989 report. Rensselaer Freshwater Institute, Rensselaer Polytechnic Institute, Troy, NY.

Mandal, S. M., L. Migliolo, O.L. Franco, and A. K. Ghosh. 2011. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8): 1741—1747.

Maryland Sea Grant. 2012. Invasive Species in the Chesapeake Watershed: WATER CHESTNUT Trapa natans L. Available http://www.mdsg.umd.edu/issues/restoration/non-natives/workshop/water_chestnut.html. Accessed 2 May 2013.

Methe B.A., R.J. Soracco, J.D. Madsen, and C.W. Boylen. 1993. Seed production and growth of water chestnut as influenced by cutting. Journal of Aquatic Plant Management 31:154-157.

Midwest Invasive Species Information Network (MISIN) and Michigan Natural Features Inventory (MNFI). 2013. Water chestnut (Trapa natans). Available http://www.misin.msu.edu/facts/detail.php?id=185. Accessed 2 May 2013.

Mills, E.L., J.H. Leach, J.T. Carlton, and C.L. Secor. 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19(1):1-54.

Mirick, P.G. 1996. Goose grief. Massachusetts Wildlife 46(2):15-16.

Mishra, S., M. Mohanty, C. Pradhan, H.K. Patra, R. Das, and S. Sahoo. 2013. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes-a case study at JK Paper mill, Rayagada, India. Environmental Monitoring and Assessment 185(5): 4347—4359.

Muenscher, W.C. 1937. Water chestnut. Pages 234-243, 246 in A biological survey of the lower Hudson watershed, supplement to 24th annual report (1935). New York Conservation Department. Albany, NY.

Muenscher, W.C. 1944. Aquatic Plants of the United States. Comstock Publishing Company, Inc/Cornell University, Ithaca, NY.

Naylor, M. 2003. Water Chestnut (Trapa natans) in the Chesapeake Bay Watershed: A Regional Management Plan. Maryland Department of Natural Resources. 35 pp.

New Hampshire Department of Environmental Services. 2015. Exotic Aquatic Plant Infestations in New Hampshire. http://des.nh.gov/organization/divisions/water/wmb/exoticspecies/exotic_plant_map.htm. Created on 07/01/2015. Accessed on 02/03/2016.

O'Neill Jr., C. R. 2006. Water Chestnut (Trapa natans) in the Northeast. New York Sea Grant. 4 pp.

Ontario's Invading Species Awareness Program (OISAP). 2013. European Water Chestnut Trapa natans. Available http://www.invadingspecies.com/invaders/plants-aquatic/european-water-chestnut/. Accessed 2 May 2013.

Patten, B.C. 1956. Notes on the biology of Myriophyllum spicatum L. in a New Jersey Lake. Torrey Botanical Club 83(1):5-18.

Pemberton, R. W. 2002. Water Chestnut. Invasive Plant Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Ft. Lauderdale, FL. Available http://www.dnr.state.il.us/stewardship/cd/biocontrol/3waterchestnut.html. Accessed 2 May 2013.

Pennsylvania Department of Conservation and Natural Resources (PADCNR). n.d. Invasive Plants in Pennsylvania: European Water Chestnut Trapas natans L. 2 pp.

Pennsylvania Flora Database. 2011. Pennsylvania Flora Project. Morris Arboretum at the University of Pennsylvania (MOAR), Philadelphia, PA. http://www.paflora.org.

Rai, U. N. and S. Sinha. 201. Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk. Environmental Monitoring and Assessment 70(3): 241—254.

Rawat, S. K., R.K. Singh, and R. P. Singh. 2012. Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes. Journal of Environmental Biology 33(1): 51—56.

Seidler, T. (curator). 2015. University of Massachusetts Herbarium, Amherst. University of Massachusetts, Amherst, MA. https://www.bio.umass.edu/biology/research/herbarium.

Smithsonian Institution. 2014. National Museum of Natural History specimen collections. Accessed via GBIF data portal, http://www.gbif.org/dataset/5df38344-b821-49c2-8174-cf0f29f4df0d. Smithsonian Institution, Washington, DC. http://www.gbif.org/dataset/5df38344-b821-49c2-8174-cf0f29f4df0d. Created on 03/10/2014. Accessed on 05/19/2014.

State of Rhode Island Department of Environmental Management, Office of Water Resources. 2015. Aquatic Invasive Species: (AIS) Plants Documented in RI Freshwaters. http://www.dem.ri.gov/programs/benviron/water/quality/surfwq/aisplant.htm. Created on 04/29/2015. Accessed on 06/26/2015.

Strayer, D. L., C. Lutz, H.M. Malcom, K. Munger, and W. H. Shaw. 2003. Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river. Freshwater Biology 48:1938—1949.

Sturtevant, E. L. and U. P. Hedrick. (ed). 1972. Sturtevant's Edible Plants of the World. Dover Publications. 775 pp.

Swearingen, J., K. Reshetiloff, B. Slattery, and S.Zwicker. 2002. Plant Invaders of Mid-Atlantic Natural Areas 82. pp National Parks Service and U.S. Fish & Wildlife Service. Available http://www.invasive.org/eastern/midatlantic/mysp.html. Accessed 25 April 2013.

Titus, J.E. 1994. Submersed plant invasions and declines in New York. Lake and Reservoir Management 10(1):25-28.

Tsuchiya, T., and T. Iwakuma. 1993. Growth and leaf life-span of a floating-leaved plant, Trapa natans L., as influenced by nitrogen flux. Aquatic Botany 46(3-4):317-324.

U.S. Army Corps of Engineers (USACE). 2011. Aquatic Herbicides. 8 pp.

U.S. Army Corps of Engineers (USACE). 2013. Invasive species profile system. US Army Corps of Engineers, Vicksburg, MS. http://corpslakes.usace.army.mil/employees/invasive/isps/index.cfm.

U.S. Environmental Protection Agency (USEPA). 1989. Superfund record of decision, Marathon Battery, NY, third remedial action - final. New York State Department of Environmental Conservation, Albany, NY.

U.S. Environmental Protection Agency (USEPA). 2000. Significant Ongoing and Emerging Issues. 20 pp. Available http://www.epa.gov/lakeerie/lamp2000/Section11.pdf.

University of Alabama Biodiversity and Systematics. 2007. Herbarium (UNA). University of Alabama, Tuscaloosa, AL. http://www.gbif.org/dataset/84f9770e-f762-11e1-a439-00145eb45e9a. Created on 04/03/2007. Accessed on 11/20/2015.

University of Connecticut. 2011. CONN. University of Connecticut, Storrs, CT. http://www.gbif.org/dataset/5288946d-5fcf-4b53-8fd3-74f4cc6b53fc. Created on 09/08/2011. Accessed on 11/20/2015.

Vermont Invasive Exotic Plant Fact Sheet Series: Water Chestnut. Vermont Agency of Natural Resources and The Nature Conservancy, Vermont Chapter. June, 1998

Wells, N.M. 2015. Cranbury: invasive water chestnut species eludes capture. TAPinto.net. New Providence, NJ. https://www.tapinto.net/towns/south-brunswick-cranbury/sections/garden-state-green/articles/cranbury-invasive-water-chestnut-species-eludes. Created on 06/30/2015. Accessed on 07/06/2015.

Wibbe, J.H. 1886. Notes from Schenectady. Bulletin of the Torrey Botanical Club 13:39.

Winne, W.T. 1950. Water chestnut: A foreign menace. Bulletin to the Schools 36(7):230-234.

Yozzo, D.J., and W.E. Odum. 1993. Fish predation on epiphytic microcrustacea in Tivoli South Bay, a Hudson River tidal freshwater wetland. Hydrobiologia 257:37-46.


Author: Pfingsten, I.A., L. Cao, and L. Berent.


Contributing Agencies:
NOAA GLRI Logo


Revision Date: 4/4/2018


Peer Review Date: 11/4/2015


Citation for this information:
Pfingsten, I.A., L. Cao, and L. Berent., 2019, Trapa natans L.: U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI, https://nas.er.usgs.gov/queries/greatlakes/FactSheet.aspx?SpeciesID=263&Potential=N&Type=0, Revision Date: 4/4/2018, Peer Review Date: 11/4/2015, Access Date: 3/18/2019

This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.