Regulations (pertaining to the Great Lakes region)
Cirsium palustre is considered to be a medium to high threat species in New York and Michigan (Higman and Campbell 2009, New York Invasive Species Council 2010). Cirsium palustre became a prohibited species in some Wisconsin counties with the creation of Wisconsin's Invasive Species Identification, Classification and Control Rule (Chapter NR40)(Terrestrial Herbaceous Plants Species Assessment Group 2007). Even though it is not present in Minnesota, it is characterized as a severe threat to native ecosystems based on its impact in other locations (Minnesota Invasive Species Advisory Council 2009). Marsh thistle is listed as an introduced species in Ontario and Quebec (Canadensys 2012). It is considered noxious in some regions of British Columbia under the Weed Control Act (OLA and MAFF 2002). Marsh thistle was categorized as a priority species for removal by the Great Lakes Indian Fish & Wildlife Commission (GLIFWC) in 2006, but this priority was reduced in subsequent comprehensive reports (Falck et al. 2006, 2009a, b) Note: Check federal, state/provincial, and local regulations for the most up-to-date information.
Control
Biological
While there are no specific biocontrol agents for C. palustre (GLIFWC 2006), herbivory by a variety of species may be beneficial but requires additional research.
Promising biocontrol candidates include a European seedhead fly, Terellia ruficauda (Fraser 2000, OLA and MAFF 2002); the seed-eating weevil, Rhinocyllus conicus, currently undergoing experimental trial in the Robson Valley Forest District, British Columbia (OLA and MAFF 2002, USDA Forest Service 2005); and the glassy cutworm, Apamea devastator (native in New York and Ohio; Volger and Stressler 2011). The latter is an indiscriminate herbivore known to feed on C. palustre and may help control marsh thistle; however, this moth feeds on a broad spectrum of additional plants.
Larvae of the artichoke plume moth (Platyptilia carduidactyla) also feed on marsh thistle, but as its common name suggests, this species is considered a pest to artichokes. Furthermore, the moth’s native range is south of the Great Lakes (Winston et al. 2008). Occasionally Cheilosia corydon, a fly native to Italy, feeds on marsh thistle (Winston et al. 2008). This fly was released in Oregon in 1991 to control several invasive thistle populations. However, since its release, C. corydon populations have attacked native and exotic thistles indiscriminately (ODA, Plant Division 2011). Additional insects that feed on and/or use C. palustre for part of their life cycle are listed on the websites of J. Lindsey (http://www.commanster.eu/commanster/Plants/Flowers/SpFlowers/Cirsium.palustre.html) and the Encyclopedia of Life (http://eol.org/data_objects/8731293).
Goats are attracted to the flowering stage of many thistles, including C. palustre. Only about 0.5% of thistle seeds that pass through their digestive systems remain viable, making it unlikely that they would aid in the spread of this species. Effective grazing could reduce marsh thistle populations, although it is unclear whether grazing would ultimately control C. palustre via the trampling of rosettes or facilitate its spread through the creation of safe sites for germination (Fraser 2000). Reseeding of native vegetation may enhance the success of prior control efforts. Moreover, goats do not select for marsh thistle and may also eat native thistles in intermingled communities (Popay and Field 1996).
Van Leeuwen found that a combination of European grazers (rabbits, the hoverfly Cheilosia grossa, and Epiblema scutula) resulted in an approximately 30% reduction in flower heads on Cirsium palustre. Furthermore, plants that had suffered predation had a reduced stem height, resulting in a reduced seed dispersal distance of surviving achenes (van Leeuwen 1983). Additional research is needed to determine if native species of rabbits and insects could have similar results on controlling C. palustre in the Great Lakes.
Physical
All physical control efforts need to be carefully executed and monitored for several years before reducing C. palustre infestations (GLIFWC 2006, Sheehan 2007).
Where infestations are small, hand pulling may be effective. In Chequamegon-Nicolet National Forest (CNNF), Wisconsin, individual plants were mechanically controlled by cutting the root just below the surface with a spade (GLIFWC 2006, USDA Forest Service 2005a). This method is most effective if completed before flowering so that all plant material can be left on site to decompose (Invasive Plant Council of British Columbia 2008). If this method is implemented while flowers and seeds are present, flower heads must be bagged and removed from site; the remaining plant material can be left on site (Invasive Plant Council of British Columbia 2008).
Mowing before plants flower may reduce the release of seeds (OLA and MAFF 2002); however, there is a risk of regrowth with extra flower heads, and extensive mowing of rosettes could promote growth of this early successional species once mowing ceases (Fraser 2000, Nordin 2002). Repeated close mowing can reduce a C. palustre infestation in three to four years (Gumbart 2012.). Mowing a minimum of three times per growing season can be enough to weaken the following year’s population (Boos et al. 2010). However, in a study by Falinska (1999), the density of C. palustre seeds in the soil decreased dramatically as time since last mowing increased, indicating that frequent mowing may actually increase the density of marsh thistle in the seedbank.
Little is known about marsh thistle response to fire as a control strategy (Gucker 2009).
Chemical
Foliar spray with clopyralid or metsulfuron-methyl is the preferred chemical treatment for C. palustre in CNNF, Wisconsin (USDA Forest Service 2005). However, glyphosate must be used in areas that are wet or near open water (USDA Forest Service 2005). Either of these two treatments are most effective if applied in the spring when plants are 6 to 10 inches tall and still in the budding stage or applied directly to the flower heads in the fall (Boos et al. 2010, USDA Forest Service 2005b). To minimize damaging other non-target species when using glyphosate, stems should be cut close to the ground and a small amount sprayed onto the cut area (Sheehan 2007).
Note: Check state/provincial and local regulations for the most up-to-date information regarding permits for control methods. Follow all label instructions.