Phoxinus phoxinus
(Linnaeus, 1758)
Common Name:
Eurasian minnow
Synonyms and Other Names:
Common minnow, European minnow, Cyprinus aphya Linnaeus, 1758, C. chrysoprasius Pallas, 1814, C. galian Gmelin, 1789, C. isetensis Georgi, 1775, C. lumaireul Schinz, 1840, C. morella Leske, 1774, C. phoxinus Linnaeus, 1758, C. rivularis (Pallas, 1773), Leuciscus phoxinus (Linnaeus, 1758), Phoxinus csikii Hankó, 1922, P. laevis Fitzinger, 1832, P. laevis subsp. balchaschana Kessler, 1879, P. laevis var. balchaschana Kessler, 1879, P. lumaireul (Schinz, 1840), P .marsilii Heckel, 1836, P. morella (Leske, 1774), P. phoxinus subsp. carpathicus Popescu Gorj & Dumitriu, 1950, P. phoxinus subsp. phoxinus (Linnaeus, 1758), P. rivularis (Pallas, 1773), P. varius Perty, 1832, P. montanus Ogérien, 1863, Salmo rivularis Pallas, 1773
Identification:
Phoxinus spp. morphology is highly dependent on habitat type, temperature, and predation pressure, with different species in the same location being morphologically indistinct (Collin and Fumagalli 2011; Raffard et al. 2019; De Santis et al. 2021). Therefore, the exact description of Phoxinus phoxinus will vary depending on geography and genetic confirmation is typically required for reliable species identification.
In general, P. phoxinus coloration can be variable according to age, maturity stage, environment, and season (Maitland 2004). The body is covered with small scales except for the belly between the pelvic and pectoral fins (Frost 1943). Phoxinus phoxinus differs from other Phoxinus species by having a lateral line reaching past the base of the anal fin along with a row of vertically elongated blotches about ? to ½ of the body depth. Caudal peduncle depth is 2.6–3.1 times its length and caudal fin has 19 rays. Has 3 dorsal and anal spines, 6–8 dorsal and anal soft rays, and 38–40 vertebrae. During the breeding season, males are brightly colored and have reddish pectoral and pelvic fins, a black throat, and a scarlet belly (Kottelat and Freyhof 2007).
Size:
5–15 cm adult total length
Native Range:
Palaearctic region. Most of Europe and parts of Asia, including Russia, China, and the Korean Peninsula (Kottelat and Freyhof 2007; Vucic et al. 2018; Lee et al. 2019).
Nonindigenous Occurrences: Phoxinus phoxinus has been introduced to eight counties in Norway and is considered invasive in high altitude Scandanavian lakes, especially where water quality has recently improved (Larsen et al. 2007; Museth et al. 2007).
This species is not currently in the Great Lakes region but may be elsewhere in the US. See the
point map
for details.
Ecology:
Phoxinus phoxinus inhabits fresh and brackish ponds, lakes, and streams located in coastal areas to the high mountains (Keith et al. 2011). It is more common in shallow lakes and slow flowing streams within the first meter of water (Museth et al. 2002). This species prefers stony substrates over sand (Jacobsen 1979) and occurs in areas with vegetation (Frost 1943). This species often occurs in shoals. It occurs in waters that have ice cover during the winter and has been recorded in waters with temperatures between 2–31°C, with an optimum of 14–17°C (Frost 1943; Cui and Wootton 1989; Keith et al. 2011). This species is found in waters with salinities up to 6 ppt (Thorman 1986; Svirgdsen et al. 2018). Observations performed by Jones (1952) on the reaction to various dissolved oxygen levels suggest that P. phoxinus can tolerate dissolved oxygen levels as low as 4-6 mg/L; it only produces a reaction at lower dissolved oxygen levels. Phoxinus phoxinus occurs in both acidic and alkaline waters (Frost 1943), but has shown an intolerance to acidification (Lappalainen et al. 2007), water level regulation (Sutela et al. 2011), and eutrophication (>15 μg/L TP) (Sutela et al. 2016).
Phoxinus phoxinus is omnivorous, feeding on zooplankton, aquatic and terrestrial macroinvertebrates, mollusks, and plant material/periphyton (Frost 1943; Gurkan and Ozdilek 2019). Diet composition can vary based on habitat, with benthic cladocera dominating in lakes and macroinvertebrates in streams in Sweden (Scharnweber 2020). Phoxinus phoxinus was reported to consume the alevin of brown trout (Salmo trutta) (Huusko and Sutela 1997). Brown trout are known to prey on P. phoxinus (Dauod et al. 1985; Borgstrøm et al. 2010). This species reaches sexual maturity on a wide gradient dependent on conditions, typically between their first and fifth year(Dauod et al. 1985; Mills and Eloranta 1985; Museth et al. 2002). The spawning season is from April to July when water temperatures are between 12.3 and 14.3°C (Byeon et al. 2019). Adults migrate from lakes toward rivers to spawn (Frost 1943). Adhesive eggs are produced over stones and gravel (Keith et al. 2011). The fecundity of Phoxinus phoxinus ranges from 200–1,000 eggs per female (Museth et al. 2002), which is slightly lower than the fecundity of P. cumberlandensis of 1,540 eggs per female (Starnes and Starnes 1981) Individuals usually live for 3–7 years, with a recorded maximum of 13 years (Museth et al. 2002; Svirgdsen et al. 2018).
Means of Introduction:
Phoxinus phoxinus has a moderate probability of introduction to the Great Lakes (Confidence level: High). Potential pathway(s) of introduction: Transoceanic shipping (ballast water)
Phoxinus phoxinus may be able to be taken up in ballast water and survive ballast tank environments. This species is capable of surviving over two weeks without food (Russell and Wootton 1992), and can tolerate a wide range of temperatures (Frost 1943; Thorman 1986) and moderately low dissolved oxygen levels (Jones 1952). However, current ballast regulations may substantially impact its survival. Phoxinus phoxinus occurs in ports that have direct trade connections with the Great Lakes (NBIC 2009; Keith et al. 2011).
Phoxinus phoxinus may also be introduced to the Great Lakes via ships declaring “No Ballast on Board” (NOBOB), which are exempt from ballast water exchange. Holeck et al. (2004) specifically states this introduction will be through BOB water or NOBOB residual water. The majority of ships entering the Great Lakes are NOBOB vessels and 43% of these ships contain residual water with less than 10‰ salinity (NOAA Final Report 2005). In the study, the temperature of the residual water from the vessels sampled ranged from -0.7 to 23.9°C; thus P. phoxinus is likely to survive the salinity and temperature of the NOBOB ballast water.
Status:
Not established in North America, including the Great Lakes. Phoxinus phoxinus has a moderate probability of establishment if introduced to the Great Lakes (Confidence level: High).
The Great Lakes climate is similar to the current range of Phoxinus phoxinus (Australian Bureau of Rural Sciences 2008). Phoxinus phoxinus can tolerate a broad range of temperatures and moderately low oxygen levels. This species occurs in the southern Bothnian Sea, Sweden, which has ice cover for about 4–5 months (Thorman 1986); thus it is likely that it is capable of overwintering in the Great Lakes. This species inhabits littoral zones with gravel and rocky bottoms (Museth et al. 2002), which are habitats that are available in the Great Lakes basin. Due to its broad physiological tolerance, Phoxinus phoxinus will likely be able to adapt to and benefit from the effects of climate change in the Great Lakes. As an omnivorous fish with a broad diet, P. phoxinus is likely able to find an appropriate food source in the Great Lakes. It has been suggested by Borgstrøm et al. (2010) that introduced P. phoxinus competes with brown trout for prey, causing reduced brown trout recruitment and individual growth rates. The fecundity of Phoxinus phoxinus ranges from 200-1,000 eggs per female (Museth et al. 2002), which is slightly lower than the fecundity of P. cumberlandensis of 1,540 eggs per female (Starnes and Starnes 1981).
After its introduction to Lake Øvre Heimdalsvatn in the 1960s, it was heavily preyed on by brown trout (Museth et al. 2003). Brown trout currently occurs in the Great Lakes and is non-native (USFWS and GLFC 2010), but it is unknown whether it will prevent the establishment of P. phoxinus in the Great Lakes. Its distribution has spread primarily by anglers (Museth et al. 2007). In Norway, its spread was limited to the southeast during the early 1900s, but by the 1950s, translocations of P. phoxinus had become frequent. In Lake Øvre Heimdalsvatn, P. phoxinus were first observed in 1969 and spread to the whole lake by 1985 (Næstad and Brittain 2010). Phoxinus phoxinus has also spread by unintentional introduction with the stocking of hatchery-reared brown trout, and by dispersal downstream from upstream reservoirs (Museth et al. 2007).
Great Lakes Impacts:
Summary of species impacts derived from literature review. Click on an icon to find out more...
Environmental | Socioeconomic | Beneficial |
|
|
| | | |
Phoxinus phoxinus has the potential for moderate environmental impact if introduced to the Great Lakes. After P. phoxinus invaded an alpine lake that only contained brown trout, the abundance of the cestode Diphyllobothrium ditremum increased dramatically. As Phoxinus phoxinus is prey for various birds, the fish invasion increased the presence of birds in the lake, which are the final hosts for Diphyllobothrium ditremum. Therefore, a higher abundance of birds increased the output of Diphyllobothrium ditremum eggs into the lake resulting in higher infection rates in brown trout which had negative health impacts (Borgstrøm et al. 2017). Phoxinus phoxinus is also host to the parasitic nematode Philometra ovata, which is known to impact intra-sexual and inter-sexual interactions between fish (Lai et al. 2016).
Following the introduction of Phoxinus phoxinus, the composition of the littoral benthos changed from one that was once dominated by Ephemeroptera, Trichoptera, Plecoptera, and Gammarus lacustris to one that is dominated by chironomids and oligochaetes (Næstad and Brittain 2010). By changing the composition of the lower food web, P. phoxinus has the potential to alter predator-prey relationships.
Phoxinus phoxinus has a high diet overlap with brown trout (Museth et al. 2010), and the presence of P. phoxinus in Lake Øvre Heimdalsvatn promoted brown trout cannibalism of their juveniles. It has also been suggested that the presence of Phoxinus phoxinus in Lake Øvre Heimdalsvatn resulted in reduced recruitment and reduced annual individual growth rates in brown trout via resource competition and the predation of brown trout alevins by P. phoxinus (Huusko and Sutela 1997; Museth et al. 2007; Borgstrøm et al. 2010).
Phoxinus phoxinus has the potential for low socio-economic impact if introduced to the Great Lakes.
Phoxinus phoxinus has been implicated in the decline of brown trout populations and growth rates in alpine lakes (Museth et al. 2007; Borgstrøm et al. 2010). Although not a native species in the Great Lakes, brown trout is currently stocked by several Great Lakes states as a recreational sport fish (USFWS and GLFC 2010), and adverse effects on this population should be considered.
Phoxinus phoxinus has the potential for low beneficial impact if introduced to the Great Lakes.
Anglers in Europe value P. phoxinus as bait fish (Museth et al. 2007). Due to their shoaling propensity and ease of capture and maintenance, Phoxinus phoxinus is used in studies on the impact of acoustics on shoaling fish and their vulnerability to trawling (Killen et al. 2015; Currie et al. 2020; Short et al. 2020).
Management:
Regulations (pertaining to the Great Lakes region) Federally banned in the United States from import and trade (including all hybrids) under the Lacey Act. Phoxinus phoxinus is prohibited in Minnesota, making it a misdemeanor to possess, import, purchase, transport, or introduce the species in the state (§ 84D.07). In Ohio, it is listed as invasive and is unlawful for any person to possess, import or sell live individuals of this species (Ohio Administrative Code 1501:31-19-01). Phoxinus phoxinus is prohibited in the Canadian province of Manitoba unless dead (C.C.S.M. c. W65 Regulation 173/2015).
Note: Check federal, state/provincial, and local regulations for the most up-to-date information.
Control
Biological
There are no known biological control methods for this species.
Physical
There are no known physical control methods for this species.
Chemical
There are no known chemical control methods specific to this species. General piscicides (such as rotenone) may be used for control, but expect significant kill of non-target species.
Note: Check state/provincial and local regulations for the most up-to-date information regarding permits for control methods. Follow all label instructions.
Remarks:
The Phoxinus species complex in Europe is quite broad and has yet to be completely resolved due to the wide natural distribution, hybridization, and anthropogenic manipulation of Phoxinus spp. communities (Miró and Ventura 2015; Corral-Lou et al. 2019) combined with intense inter- and intraspecific morphological and phenotypic plasticity (Collin and Fumagalli 2015; Ramler et al. 2017). Phoxinus phoxinus is itself a cryptic species, with recent genetic and morphological studies suggesting multiple distinct subspecies distributed across Europe (Kottelat and Frehoff 2007; Palandacic et al. 2015, 2017, 2020). However, further study is required to completely separate all genetic lineages of the genus.
References
(click for full reference list)
Author:
Baker, E., M. Tucker, J. Li., and A. Bartos
Contributing Agencies:
Revision Date:
9/28/2022
Citation for this information:
Baker, E., M. Tucker, J. Li., and A. Bartos, 2024, Phoxinus phoxinus (Linnaeus, 1758): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI, https://nas.er.usgs.gov/queries/greatlakes/FactSheet.aspx?Species_ID=3641&Potential=Y&Type=2&HUCNumber=, Revision Date: 9/28/2022, Access Date: 10/14/2024
This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.