Regulations It is illegal to import, possess, deposit, release, transport, breed/grow, buy, sell, lease or trade L. fortunei in Ontario (Invasive Species Act 2015). Ohio lists L. fortunei as an injurious aquatic invasive species and therefore it is unlawful for any person to possess, import, or sell live individuals within the state. Dead golden mussels can only be possessed in Ohio if they are preserved in ethanol or formaldehyde, or eviscerated (internal organs removed) (OH ADM. Code, 1501:31-18-01). In Michigan, it is illegal to possess, import, sell, or offer to sell L. fortunei (NREPA Part 413 as amended, MCL 324.41302). Illinois lists L. fortunei as an injurious species as defined by 50 CFR 16.11-15. Therefore, L. fortunei cannot be possessed, propagated, bought, sold, bartered or offered to be bought, sold, bartered, transported, traded, transferred or loaned to any other person or institution unless a permit is first obtained from the Department of Natural Resources. Illinois also prohibits the release of any injurious species, including L.fortunei (17 ILL. ADM. CODE, Chapter 1, Sec. 805). It is prohibited to transport, possess, or introduce L. fortunei in Wisconsin (Wisconsin Chapter NR 40). There are no regulations on L. fortunei in Minnesota, Indiana, Pennsylvania, or New York.
Note: Check federal, state, and local regulations for the most up-to-date information.
Control
Biological
Previous studies conducted in South America have shown that L. fortunei was prominent in the diet of several species of native fish (Oliveira et al. 2010; Isaac et al. 2012). The ability of native predators to adapt to exotic prey is not uncommon (Carlsson et al. 2009; Oliveira et al. 2010; Isaac et al. 2012). Given the physical similarities between dreissenid mussels and L. fortunei it is likely that predators of Dreissena spp. would also feed on L. fortunei if it were to become established in the Great Lakes. Dreissenid predators such as Freshwater drum (Aplodinotus grunniens), Common carp (Cyprinus carpio), Round goby (Neogobius melanostomus), Pumpkinseed (Lepomis gibbosus), Lake whitefish (Coregonus clupeaformis), Channel catfish (Ictalurus punctatus), and Diving duck (Aythya spp.), which are common in Great Lakes coastal wetlands (Herdendorf 1987, Bookhout et al. 1989, Johnson 1989 in Bowers and de Szalay 2007) could potentially reduce population densities of L. fortunei. However, predation by species maladapted to digest L. fortunei could also aid in its dispersal. Oliveira et al. (2010) found intact mollusks in several fish species suggesting that the mollusks could not be digested and therefore could be passed through alive.
The use of biocides to control L. fortunei has been examined. The commercial biocide Bulab 6002®, a quaternary ammonium polymer, rendered all L. fortunei larvae inactive after 24 hours at low concentrations (1 mg/L). This biocide may be effective in preventing larval settlement since inactive larvae do not secrete the byssus necessary to attach to substrate (Darrigran et al. 2007). The use of the bacterium Pseudomonas flourescens CL145A, commercially known as Zequanox®, is highly lethal to dreissenid mussels and can affect L. fortunei (GLMRIS 2012; Rackl et al., 2012).
Physical
Physical control methods for Dreissena polymorpha could be implemented for L. fortunei control. These methods include thermal treatments, mechanical filtration, mechanical cleaning (scraping, brushing, and pigging), high-pressure jet cleaning, carbon dioxide pellet blasting, freezing, desiccation, acoustics, electric fields and UV light (Boelman et al. 1997). The tolerance of L. fortunei to desiccation is pertinent to the control of this species. One study found that golden mussels exposed to air without humidity control (49 to 63% relative humidity) did not survive more than 120 hours whereas mussels in more humid environments survived up to 168 hours. Therefore, desiccation is a viable option to reduce biofouling but water must be periodically removed for at least six days and this should be accompanied by procedures to reduce the relative humidity of the environment (Darrigran et al. 2004). High frequency turbulent flow (>30 Hz) is an effective way of killing L. fortunei veligers, but the energy required to create this turbulence may restrict its practical application (Xu et al. 2015).
Chemical
Chemical treatments such as chlorination or the use of commercial, non-oxidizing molluscicides can be effective against L. fortunei but water temperature and concentration can affect the efficiency of these chemical agents (Cataldo et al. 2008). The life stage of the mussels often dictates the control strategy. Targeting juveniles (5-8 mm in size) is often the most effective strategy because they are less tolerant than adults (thus requiring lower toxicant concentrations and exposure times), they detach more readily from surfaces, and they do not require continuous application throughout the reproductive period as do planktonic larvae. It is beneficial to prevent juveniles from reaching the next stage because adults can form dense mats and significantly impact water flow. Therefore, in order to maximize the overall effectiveness of these treatments while minimizing environmental impact it is imperative to understand the timing of reproduction of L. fortunei (Boltovskoy et al. 2009). Limnoperna begin reproducing in spring and cease reproducing in fall at temperatures around 16-17 °C, providing an extended period of reproduction in warm ecosystems. The mussels are dioecious and reproduce via external fertilization. Larvae undergo several pelagic development stages before settling and attaching to the substrate 11-20 days after spawning (Cataldo et al. 2005)
Other
Xu et al. (2015) studied the effectiveness of an ecological integrated approach to control L. fortunei biofouling in water transfer tunnels. The authors developed a prevention pool that aimed at reducing living veligers entering and attaching onto a water transfer tunnel. In the experiment water entered through a fore bay and into the pool that consisted of three attachment sections. The first two sections consisted of bamboo rafts that served as suitable material for mussel attachment and the third section contained geotextile frames used to absorb veligers that were not capable of stable attachment to the bamboo. In order to limit the mussel density in the bamboo sections these areas were filled with predators of L. fortunei: Carassius auratus (Common name: Goldfish) and Channa argus (Common name: Northern snakehead). Pipes in the end section of the prevention pool created high frequency turbulent flows as a final measure to guarantee the reduction of living veligers. The authors noted that the use of the predatory fish played an important role in restraining the attachment density and shell length of the golden mussel in the prevention pool. The experiment yielded an 80% reduction rate of living veligers in water that passed through the pool and a sharp decrease in mussel attachment density was observed as distance from the pool entrance increased. This method was tested at a pump station on the Xizhijiang River in China where the construction of an integrated ecological prevention pool yielded an 80% reduction in attachment density from 2012 to 2013. Using prevention pools on water intake structures in the Great Lakes could be an effective way to reduce biofouling, but the use of the Carassius auratus and Channa argus is not preferable since these species are not indigenous to the basin.
Note: Check state and local regulations for the most up-to-date information regarding permits for pesticide/herbicide/piscicide/insecticide use.