Current research on the environmental impact of Daphnia lumholtzi in the Great Lakes is inadequate to support proper assessment. Realized:
Daphnia lumholtzi has been known to invade ecosystems rapidly (Havel and Medley 2006); as a result, much research exists on this daphnid’s invasion success (e.g., Acharya et al. 2006, Frisch and Weider 2010, Lennon et al. 2003). However, studies of its impacts are limited, especially in the Great Lakes.
In situ research comparing native Daphnia spp. to the exotic D. lumholtzi has found that competition between these species is lower than expected. Daphnia lumholtzi is a tropical species and is adapted to warmer temperatures than native North American Daphnia. Thus, D. lumholtzi population sizes tend to increase in late summer when native Daphnia populations have been historically low. As a result, D. lumholtzi may be filling a vacant "temporal niche" in the warmer summer months (Dzialowski et al. 2000, East et al. 1999, Goulden et al. 1995, Johnson and Havel 2001, Work and Gophen 1999).
Potential:
In competitive experiments between D. lumholtzi and Great Lakes native D. pulex, Dobberfuhl and Elser (2002) found that in tanks with mixed populations, D. lumholtzi productivity dropped to 55% of its control value, while D. pulex productivity dropped to just 17% of its control value. Combined productivity of the daphnids dropped by over 50%, indicating that the presence of D. lumholtzi could facilitate competitive exploitation and have adverse impacts on overall productivity of the zooplankton community. In this regard, research by Dzialowski (2010) suggests that some Daphnia species are more vulnerable to competition with D. lumholtzi (e.g., D. parvula and Ceriodaphnia dubia were more affected than D. magna).
By occupying a niche that was previously unexploited by Daphnia spp., D. lumholtzi has been hypothesized to compete with non-daphnid zooplankton (Dzialowski et al. 2000). One such zooplankter is Diaphanasoma, whose population size was significantly lower in Kansas reservoirs following D. lumholtzi invasion (Dzialowski et al. 2000).
If D. lumholtzi outcompetes native zooplankton populations during their normal peak abundance in late summer, this may adversely impact planktivorous fish relying on that critical food source but unable to tolerate D. lumholtzi’s spines. Larval and juvenile stages of fish are more likely to be unable to consume D. lumholtzi due to gape (mouth-size) limitation (Kolar and Wahl 1998).
Soeken-Gittinger et al. (2009) found that the density of D. lumholtzi in some parts of the Illinois River was larger than the density of all other native zooplankton combined. High densities appeared to be correlated with high temperatures and increased inorganic sediment suspension, suggesting that areas in the Great Lakes with these conditions could face the greatest impacts (Soeken-Gittinger et al. 2009).
There is little or no evidence to support that Daphnia lumholtzi has significant socio-economic impacts in the Great Lakes.
Current research on the beneficial effect of Daphnia lumholtzi in the Great Lakes is inadequate to support proper assessment.
Potential:
When juvenile fish attain a size capable of consuming D. lumholtzi, the fish can grow more rapidly and more easily avoid predation. This is particularly advantageous during the summer months, when D. lumholtzi presents itself as a larger prey item than would otherwise occur in the zooplankton. Silverside (Menidia beryllina) may be able to use this new prey item and survive longer during their late summer spawning period (Leinesch and Gophen 2001). The findings of Lemke et al. (2003) support this prediction, observing an increased consumption of D. lumholtzi in four fish species of Lake Chautauqua, Illinois (blue gill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis, and black crappie Pomoxis nigromaculatus), as fish size increased.
This species is a common research subject, as scientists have been able to track its spread since establishment and to evaluate factors of its invasion success (Havel and Herbert 1993, Havel and Medley 2006, Havel et al. 2005, Work and Gophen 1999). Daphnia lumholtzi has also been studied for its unique ability to proliferate during high cyanobacterial growth, a time when few other daphnids are present (Pattinson et al. 2003, Semyalo et al. 2009).