Hydrilla verticillata has a high probability of introduction to the Great Lakes (Confidence level: Moderate).
Potential pathway(s) of introduction: Dispersal, hitchhiking/fouling, unauthorized release This species has been found inside the Great Lakes basin at Erie Canal (Tonawanda Creek), Cayuga Lake, and Tinker Nature Park pond, NY, and in marshes and ponds around Cleveland, OH (Pfingsten, 2018, pers. comm).
Hydrilla verticillata was first introduced to the United States as an aquarium plant in the 1960s and has since spread through recreational activities (Langeland 1996). Hydrilla verticillata spreads through vegetative fragmentation (Clayton et al. 2006). Hydrilla verticillata can potentially enter the Great Lakes region through fragmentation and subsequent dispersal from its current range. Hydrilla verticillata can be dispersed by plant fragments attached to boats or trailers, or tubers that are consumed and excreted by waterfowl (Clayton et al. 2006).
2012).
This species can be purchased and introduced to the Great Lakes via unauthorized intentional release. Although H. verticillata is listed on the United States Federal Noxious Weed list, it is still sold over the internet as an aquarium plant and can be obtained from Ontario’s aquarium trade (Marson et al. 2009). Moreover, this species has been found as a contaminant in aquarium orders of other plant species (Maki and Galatowitsch 2004).
Hydrilla verticillata has a moderate probability of establishment if introduced to the Great Lakes (Confidence level: High).
Hydrilla verticillata has physiological tolerances and adaptive attributes that make it the “perfect aquatic weed” (Langeland 1996). Hydrilla verticillata can survive fresh and brackish waters (0-7 ppt salinity) (Langeland 1996). This species can grow in ogliotrophic to eutrophic conditions and in low-light levels (Ramey 2001). It is likely that the Great Lakes has appropriate light and nutrient levels for H. verticillata. It is possible that Hydrilla verticillata can overwinter in the Great Lakes.The monoecious biotype is somewhat winter-hardy (Ramey 2001), and produces turions, which are overwintering vegetative propagules (Maki and Galatowitsch 2004). This species occurs on every continent except Antarctica. It occurs in inland waters near the Great Lakes region such the Erie Canal in New York (NY DEC 2012), which has similar climatic and abiotic conditions as the Great Lakes region. This species inhabits fresh waters at depths up to 15 m (Langeland 1996): such habitats are available in the Great Lakes. The predicted effects of climate change in the Great Lakes may benefit H. verticillata. Increased carbon dioxide levels and elevated water temperatures may increase the growth rate of H. verticillata (Chen et al. 1994), and climate change may enhance its northward spread (Cooke et al. 2005).
Hydrilla verticillata has a high rate of productivity. It can produce an average of 6,046 tubers per season (Sutton et al. 1992). Experiments show that H. verticillata can produce up to 46 axillary tubers per gram dry weight (Thullen 1990). Small amounts of Hydrilla verticillata can be moved and develop into new populations. About 50% of the fragments with a single whorl can sprout to form a new plant, while those with a greater number of whorls have an even higher chance of sprouting (Langeland and Sutton 1980). Its ability of vegetative fragmentation may aid its establishment in new environments. It spreads especially quickly in fast-flowing waters, as these conditions efficiently disperse fragments (Ramey 2001).
Hydrilla verticillata has the potential for high environmental impact if introduced to the Great Lakes.
Hydrilla verticillata can potentially be detrimental to native species and the ecosystem. This species grows aggressively and competitively as dense mats that can displace or shade out native submersed plants. In the southeast U.S., H. verticillata effectively displaces beneficial native vegetation, such pondweeds (Potamogeton sp.) (Langeland 1996), eelgrass (Vallisneria americana), and coontail (Ceratophyllum demersum) (Rizzo et al. 1996, Van Dijk 1985). The frequency of occurrence of southern naiad in Florida was reduced from 56% to 4% after the establishment of H. verticillata (Estes et al. 1990). Infestations may reduce seed production of native aquatic plants, which may reduce the number of native species in the community (De Winton and Clayton 1996). Infestations of this species may shift phytoplankton compositions and alter chlorophyll content (Schmitz et al. 1993). Experimental evidence suggests that H. verticillata has high allelopathy potential and can inhibit the growth of lettuce seedling and duckweed (Elakovich and Wooten 1989).
Infestations of H. verticillata may alter water chemistry, decrease oxygen levels, increase pH, and increase water temperature (Woodward and Quinn 2011). Abnormal stratification of the water column (Rizzo et al. 1996, Schmitz et al. 1993), decreased oxygen levels (Pesacreta 1988), and fish kills (Rizzo et al. 1996) have been documented in H. verticillata infestations.
Sportfish exhibited lower weight and size when H. verticillata occupied the majority of the water column, which suggests that foraging efficiency was reduced as open water space and natural vegetation gradients were lost (Colle and Shireman 1980).
Hydrilla verticillata has the potential for high socio-economic impact if introduced to the Great Lakes.
Hydrilla verticillata is among the worst aquatic plants in the southeastern U.S., causing costly damage to irrigation and hydroelectric power projects, and recreation (Cooke et al. 2005). This species causes major impacts on infrastructure. Hydrilla verticillata can reduce the flow in drainage canals, which can result in flooding and damage to canal banks and structures (Langeland 1996). This species can clog intake pumps used for irrigation. In 1994-1995, Florida spent $14.5 million controlling hydrilla (Woodward and Quinn 2011). During September 1989 in South Carolina, heavy rainfall and consequent flood discharge caused large mats of H. verticillata to break loose and clog intake screens, shutting down two hydroelectric turbines at Guntersville Dam (North Carolina Agricultural Extension Service 1992). This species is a nuisance for navigation of recreational and commercial waters and interferes with swimming (Langeland 1996). The economic value of Orange Lake, Florida ($11 million) was lost during the infestation of Hydrilla verticillata (Milon et al. 1986). The dense mats of H. verticillata create stagnant waters that can be used as mosquito breeding habitat (Kerr Lake Guide 2013), making this species a risk for human health.
Hydrilla verticillata has the potential for moderate beneficial impact if introduced to the Great Lakes.
Hydrilla verticillata may increase water clarity by reducing sediment resuspension and reducing phytoplankton populations (Langeland 1996).Hydrilla verticillata may benefit some species as a food source, but only when its coverage is below 30% (Cole and Shireman 1980, Estes et al. 1990).