Regulations (pertaining to the Great Lakes region)
Phalaris arundinacea has no federal designation within the United States or Canada. The important economic use of Phalaris arundinacea in agriculture leads to it being unregulated in many states. Wisconsin restricts this species’ use (NR 40); here it cannot be possessed, transported, transferred, or introduced without a permit. Wisconsin specifically restricts Phalaris arundinacea var. picta and other ornamental variegated varieties and cultivars but does not include the parent type- reed canary grass. This makes a distinction between the native and invasive Phalaris arundinacea with the native variety being unregulated.
Illlinois does not list Phalaris arundinacea on its “Aquatic Life Approved Species List” since some populations are native to Illinois. However, Illinois DNR does find this species needs to be restricted and finds it inappropriate for import, possession, or culture since it is an invasive species (Illinois DNR, pers. communication). Phalaris arundinacea is not listed in the Illinois Noxious Weed Act or the Illinois Exotic Weed act. However, it is managed across the state in natural areas and at restoration sites (Illinois DNR, pers. communication).
Other Great Lakes states monitor reed canarygrass and consider it an “invasive species” but do not have legislative restrictions on its movement. These include: Minnesota, Indiana, and Ohio. Currently, the Indiana Division of Entomology and Plant Pathology, which regulates plants in Indiana, is reviewing Phalaris arundinacea to consider restricting its transportation.
Phalaris arundinacea is not regulated federally in Canada or provincially in Ontario but is considered an invasive species (Anderson 2012).
Note: Check federal, state/provincial, and local regulations for the most up-to-date information.
Control
Due to its ambiguous native status, management decisions to control populations of Phalaris arundinacea are dependent on the impact that it has in a given area (Waggy 2010).
Biological
Live willow stakes have been shown to reduce reed canarygrass growth if planted at appropriate densities (Kim et al. 2006).
Physical
Reed canarygrass grows back rapidly following manual removal with heavy equipment from rhizomes and seeds that remain in the soil (Apfelbaum and Sams n.d). Fire can control spread and keep from Phalaris arundinacea infestating wetlands but needs to be performed annually for five to six years before fully controlled (Lavergne and Molofsky 2006).
Chemical
Exposure to 300ppm of boron causes complete tissue necrosis within three weeks once applied to reed canarygrass roots (Apfelbaum and Sams 1987).
Amitrol (4.5kg/ha plus ammonium thiocyanate at 4.1kg/ha) can reduce three week old seedlings by 94% but is not effective for seedlings older than three weeks (Comes et al. 1981). Glyphosate (1.1 kg/ha) has been shown to control five to ten week old seedlings (Comes et al. 1981). Dalapon and Amitrol-T when used together have controlled canarygrass in Montana for up to five years. Chemicals were most effective when used at flowering time (Apfelbaum and Sams 1987). Newbold (1975) found Dalapon and Paraquat, separate and mixed together, provided an effective “kill for one year”.
Herbicide treatments of imazapyr (Bahm et al. 2014) and sethoxydim (Annen et al. 2005) have proven to be effective at controlling reed canarygrass. Sethoxydim is a selective herbicide that kills most annual and perennial grasses (Annen et al. 2005).
Other
Combination of chemical and physical removal methods need to be repeated for effective control and to prevent re-infestation (Kilbride and Paveglio 1999). Disking followed with chemical Rodeo application the following growing season had similar control compared to the most efficient treatments (Kilbride and Paveglio 1999). Control of reed canarygrass is most effective when employed as a long-term ecosystem-wide strategy approach (Waggy 2010).