Faxonius virilis
Faxonius virilis
(Virile Crayfish, Northern Crayfish)
Crustaceans-Crayfish
Native Transplant
Translate this page with Google
Français Deutsch Español Português Russian Italiano Japanese

Copyright Info
Faxonius virilis (Hagen, 1870)

Common name: Virile Crayfish, Northern Crayfish

Synonyms and Other Names: Orconectes virilis (Hagen, 1870). Faxonius virilis underwent a reclassification in August 2017, changing the genus of non-cave dwelling Orconectes to Faxonius (Crandall and De Grave 2017).

Taxonomy: available through www.itis.govITIS logo

Identification: Individuals of this species can vary in color, ranging from a light- to olive-brown body with dark brown markings on each abdominal segment. Upper walking legs and chelae can be bluish. Tips of chelae are orange. Individuals have a long, broad rostrum and broad, flattened chelae with long fingers (Crocker and Barr 1968; Taylor et al. 2015). There is taxonomic confusion surrounding F. virilis and F. causeyi (Hobbs 1989). Faxonius nais is also often confused with F. virilis. They differ anatomically in gonopod structure; the lengthier gonopod element is more curved in F. nais (Johnson and Johnson 2008).

Size: Individuals up to 13.1 cm carapace length have been collected (Z. Barnett, unpublished data).

Native Range: Broadly, F. virilis is native to the Great Lakes, Missouri River, upper Mississippi River, and lower Ohio River and up to east of the continental divide in Montana (Taylor et al. 2015), with disjunct populations in the Black River in Missouri and Arkansas, the upper White River in Oklahoma and Arkansas, the Red River in Texas and Oklahoma, and Lake Champlain in New York (C. Taylor, pers. comm.).

Its native range in Arkansas and Oklahoma is uncertain, but it is known to be native in the Upper Black River, Upper Illinois River, and Upper White River drainages in northern Arkansas and eastern Oklahoma (C. Taylor, pers. comm.) and possibly drainages along the Texas-Oklahoma border (D. Johnson, pers. comm.). Its native range in Texas is uncertain; probably includes northeastern Texas in Bois D’arc-Island, Denton, East Fork Trinity, Elm Fork Trinity, Farmers-Mud, Lake Texoma, and Upper Trinity drainages (D. Johnson, pers. comm.). Faxonius virilis is native east of the continental divide in Montana (Crocker and Barr 1968). Its native range in southern Missouri is uncertain, but it is probably in the Upper Black River drainage (C. Taylor, pers. comm.) and in the Mississippi River drainage north of the “Bootheel” (the southeastern corner of Missouri; B. Williams, pers. comm.). Its native range in New York includes the Ausable River, Chateaugay-English, Eastern Lake Erie, Lake Champlain, Salmon, Saranac River, and St. Regis drainages (Crocker 1957; C. Taylor, pers. comm.).

US auto-generated map Legend USGS Logo
Alaska auto-generated map
Alaska
Hawaii auto-generated map
Hawaii
Caribbean auto-generated map
Puerto Rico &
Virgin Islands
Guam auto-generated map
Guam Saipan
Interactive maps: Point Distribution Maps

Nonindigenous Occurrences: Faxonius virilis occurs in parts of 26 states: Black Warrior-Tombigbee, Cahaba, Guntersville Lake, Locust, Middle Coosa, Middle Tallapoosa, Sipsey Fork, and Upper Coosa drainages in Alabama (Schuster et al. 2008; Illinois Natural History Survey 2017); Bill Williams, Black, Chevelon Canyon, Colorado Headwaters, Fort Pearce Wash, Lower Verde, Middle Little Colorado, Rillito, San Francisco, Upper San Pedro, Upper Santa Cruz, and Upper Verde drainages in Arizona (Davidson et al. 2010); Big Chico Creek-Sacramento River, Butte Creek, Lower Sacramento, Sacramento-Stone Corral, San Francisco Bay, and Upper Cosumnes in California (Riegel 1959; Ruiz et al. 2000); Big Thompson, Colorado Headwaters-Plateau, Lower Yampa, Middle South Platte-Cherry Creek, and Purgatoire drainages in Colorado (GBIF 2013; Illinois Natural History Survey 2017; Martinez 2012; USGS BioData 2017); all drainages in Connecticut (Beauchene 2011); Bear Lake, Clearwater, Coeur d’Alene Lake, and Salmon Falls drainages in Idaho (Clark and Lester 2005; Idaho Fish and Game 2016); Highland-Pigeon drainage in Illinois (Illinois Natural History Survey 2017); Lower Kennebec, Piscataquis, Piscataqua-Salmon Falls, Upper Androscoggin, and Upper Kennebec drainages in Maine (Crocker 1979); Gunpowder-Patapsco drainage in Maryland (Schwartz et al. 1963); Blackstone, Charles, Chicopee, Concord, Farmington, Housatonic, Merrimack River, Narragansett, and Quinebaug drainages in Massachusetts (Crocker 1979; GBIF 2016); Upper Tombigbee drainage in Mississippi (USDA 2014); west of the continental divide in the Blackfoot, Fisher, Flathead Lake, Lower Clark Fork, Lower Flathead, and Swan drainages in Montana (Sheldon 1989); Black-Ottauquechee, Merrimack River, Pemigewasset, Saco, and Winnipesaukee River drainages in New Hampshire (Crocker 1979); reported in an unspecified location in New Jersey (Hobbs 1989); Jemez, Middle San Juan, Mora, Rio Grande-Albuquerque, Rio Hondo, Upper Gila-Mangas, and Upper Rio Grande drainages in New Mexico (Illinois Natural History Survey 2017); Lower Virgin drainage in Nevada (Johnson 1986); Santee, South Fork Catawba, and Upper Catawba drainages in North Carolina (Cooper 2003; Simmons and Fraley 2010); Ashtabula-Chagrin and Licking drainages in Ohio (Thoma and Jezerinac 2000); Lower Susquehanna and Monocacy drainages in southern Pennsylvania (GBIF 2016; Smithsonian Institution 2014); Blackstone and Narragansett drainages in Rhode Island (Crocker 1979); Upper French Broad drainage in Tennessee (Illinois Natural History Survey 2017); Duchesne, Escalante, Escalante Desert, Fort Pearce Wash, Great Salt Lake, Lower Green-Diamond, Lower Lake Powell, Lower San Juan, Lower Virgin, Lower Weber, Price, Provo, Rush-Tooele Valleys, San Rafael, Spanish Fork, Strawberry, Upper Colorado-Kane Springs, Upper Green-Flaming Gorge Reservoir, Upper Lake Powell, and Upper Virgin drainages Utah (Clark and Lester 2005; Johnson 1986; Larson and Olden 2011; Taba et al. 1965); Black-Ottauquechee, Deerfield, Lamoille River, St. Francois River, Upper Connecticut-Mascoma, Waits, White, and Winooski River drainages in Vermont (Crocker 1979); Maury, Middle James-Willis, Middle New, Middle Potomac-Catoctin, Middle Potomac-Anacostia-Occoquan, North Fork Holston, North Fork Shenandoah, South Fork Shenandoah, Upper Clinch, Upper James, Upper New, and Upper Roanoke drainages with a probable more expansive distribution in Virginia (Virginia Fish and Wildlife Information Service 2016); Upper Columbia River system in the Chief Joseph, Franklin D. Roosevelt Lake, Lake Chelan, Lake Washington, Lower Crab, Puget Sound, and Methow drainages in Washington (Larson et al. 2010); Middle Ohio-Raccoon, Potomac, Upper Ohio-Beaver, and Upper Ohio-Little Kanawha drainages in West Virginia (Loughman and Welsh 2010); Blacks Fork, Popo Agie, Upper Bear, Upper Green-Flaming Gorge Reservoir, and Upper Powder drainages in Wyoming (Hubert 1988; Johnson 1986; Larson and Olden 2011).

Ecology: Faxonius virilis is found in streams with moderate flow and turbidity, abundant cover, muddy, sandy, or rocky substrate and stable water levels (Crocker and Barr 1968; Maude and Williams 1983; Z. Barnett, pers. comm.). This species is inhibited by high velocity flow (Maude and Williams 1983). Faxonius virilis does not burrow, but may tunnel (Pflieger 1996). Mating occurs during two periods: August to October and April to May, and eggs are laid in spring (Crocker and Barr 1968). Pflieger (1996) observed larger males than females in Missouri, while Z. Barnett (pers. comm.) reported no size difference in Alabama.

Means of Introduction: Probable introduction methods include bait bucket introduction and intentional stocking for forage (Larson and Olden 2011). It has been stocked as forage in Montana by Montana Fish, Wildlife and Parks (Sheldon 1989) and in Utah (Johnson 1986) in several locations.

Status: Faxonius virilis is established in 24 states: Alabama (Taylor et al. 2007), Arizona (Davidson et al. 2010), California (Ruiz et al. 2000), Colorado (Clark and Lester 2005; Hobbs 1989; Martinez 2012), Connecticut (Beauchene 2011), Idaho (Lester and Clark 2005; Idaho Species Catalog 2016), Maine (Crocker 1979), Maryland (Schwartz et al. 1963), Massachusetts (Crocker 1979; Taylor et al. 2007), west of the continental divide in Montana (Sheldon 1989), Nevada (Johnson 1986), New Hampshire (Crocker 1979; Taylor et al. 2007), New Mexico (Taylor et al. 2007), North Carolina (Cooper and Armstrong 2007; Simmons and Fraley 2010), Ohio (Thoma and Jezerinac 2000; Taylor et al. 2015), Pennsylvania (GBIF 2016; Smithsonian Institution 2014), Rhode Island (Crocker 1979; Taylor et al. 2007), Tennessee (Hobbs 1989; Illinois Natural History Survey 2017; Taylor et al. 2007), Utah (Taba et al. 1965; Johnson 1986; Clark and Lester 2005; Larson and Olden 2011), Vermont (Guarino et al. 2012; Taylor et al. 2007; Crocker 1979), Virginia (Virginia Fish and Wildlife Information Service 2016), Washington (Larson et al. 2010), West Virginia (Loughman and Welsh 2010), and Wyoming (Johnson 1986; Hubert 1988; Larson and Olden 2011). It is likely a failed introduction (no longer present) in Mississippi due to no recent collections (S. Adams, pers. comm.). Its status is unknown in New Jersey (Hobbs 1989; Taylor et al. 2007), as the only reported introduction was from Hobbs (1989).

Impact of Introduction: Introduction of F. virilis can potentially cause decline or local extirpation of native crayfish (Loughman and Welsh 2010) and threaten freshwater biodiversity and macroinvertebrate community abundance and structure (Hanson et al. 1990; Clark and Lester 2005). This species is known to eat juvenile reptiles and amphibians, fish eggs, and macroinvertebrates (Recsetar and Bonar 2015).

Remarks: Faxonius virilis abundance decreased with stream restoration, including substrate modification by travertine and exotic fish predation (Adams and Marks 2016). Using this species as a human food resource can also potentially decrease the abundance of introduced populations (Crocker 1957; Pflieger 1996).

The native range of F. virilis in Arkansas, Missouri, Oklahoma, and Texas is uncertain. Additional native drainages are likely in Oklahoma and southern Missouri (C. Taylor, pers. comm.; D. Johnson, pers. comm.). The connectivity of native range drainages in Texas and Arkansas to adjacent drainages in Oklahoma and southern Missouri imply that these drainages in Oklahoma and southern Missouri might be native (C. Taylor, pers. comm.; D. Johnson, pers. comm.).

References: (click for full references)

Adams, K.J., and J.C. Marks. 2016. Population response of the invasive crayfish Orconectes virilis (Hagen, 1870) (Decapoda: Astacoidea: Cambaridae) to restoration: What are the consequences of changes in predatory regulation and physical habitat in Fossil Creek, Arizona, USA? Journal of Crustacean Biology 36(5):597-606. http://dx.doi.org/10.1163/1937240X-00002471.

Beauchene, M. 2011. Crayfish distribution project. Connecticut Department of Energy and Environmental Protection, Bureau of Water Protection and Land Reuse, Hartford, CT. http://www.ct.gov/deep/lib/deep/water/water_quality_management/monitoringpubs/2011_crayfishdist.pdf. Accessed on 10/27/2016.

Clark, W.H., and G.T. Lester. 2005. Range extension and ecological information for Orconectes virilis (Hagen 1870) (Decapoda: Cambaridae) in Idaho, USA. Western North American Naturalist 65(2):164-169.

Cooper, J.E. 2003. A report on adventive crayfishes in North Carolina. North Carolina State Museum of Natural Sciences, Raleigh, NC.

Cooper, J.E., and S.A. Armstrong. 2007. Locality records and other data for invasive crayfishes (Decapoda: Cambaridae) in North Carolina. Journal of the North Carolina Academy of Science 123(1):1-13.

Crandall, K.A. and S. De Grave. 2017. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology 37(5):615-653. https://doi.org/10.1093/jcbiol/rux070.

Crocker, D.W. 1957. The crayfishes of New York State (Decapoda, Astacidae). University of the State of New York, Albany, NY.

Crocker, D.W. 1979. The crayfishes of New England. Proceedings of the Biological Society of Washington 92:225-252.

Crocker, D.W., and D.W. Barr. 1968. Handbook of the crayfishes of Ontario. University of Toronto Press, Toronto, Ontario.

Davidson, E.W., J. Snyder, D. Lightner, G. Ruthig, J. Lucas, and J. Gilley. 2010. Exploration of potential microbial control agents for the invasive crayfish, Orconectes virilis. Biocontrol Science and Technology 20(3):297-310. http://dx.doi.org/10.1080/09583150903514023.

GBIF. 2016. Global Biodiversity Information Facility (GBIF) Database. Global Biodiversity Information Facility. http://www.gbif.org/. Accessed on 10/27/2016.

Guarino, J., C. Gastador, and E. Miller. 2012. Field guide to the crayfish of the White River watershed, east-central Vermont. White River Partnership and Verdana Ventures, LLC, Randolph, VT. http://whiteriverpartnership.org/wp-content/uploads/2014/04/Field-Guide-to-the-Crayfish-of-the-White-River-Watershed.pdf. Accessed on 10/27/2016.

Hanson, J.M., P.A. Chambers, and E.E. Prepas. 1990. Selective foraging by the crayfish Orconectes virilis and its impact on macroinvertebrates. Freshwater Biology 24:69-80.

Hobbs, H.H., Jr. 1989. An illustrated checklist of the American crayfishes (Decapoda: Astacidae, Cambaridae, and Parastacidae). Smithsonian Contributions to Zoology 480:1-236.

Hubert, W.A. 1988. Survey of Wyoming crayfishes. Great Basin Naturalist 48(3):370-372. https://ojs.lib.byu.edu/spc/index.php/wnan/article/viewFile/28867/27330.

Idaho Species Catalog. 2016. Virile crayfish (Orconectes virilis). Idaho Department of Fish and Game. https://idfg.idaho.gov/species/taxa/25571. Accessed on 10/27/2016.

Illinois Natural History Survey. 2017. Illinois Natural History Survey Collection Databases. Illinois Natural History Survey. https://biocoll.inhs.illinois.edu/portalx/collections/index.php. Accessed on 08/15/2017.

Integrated Taxonomic Information System (ITIS). 2016. Orconectes virilis. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=97425#null. Accessed on 10/27/2016.

Johnson, J.E. 1986. Inventory of Utah crayfish with notes on current distribution. Great Basin Naturalist 46(4):625-631.

Johnson, S.K., and N.K. Johnson. 2008. Texas Crawdads. Crawdad Club Designs, College Station, TX.

Larson, E.R., C.A. Busack, J.D. Anderson, and J.D. Olden. 2010. Widespread distribution of the non-native northern crayfish (Orconectes virilis) in the Columbia River Basin. Northwest Science 84(1):108-111.

Larson, E.R., and J.D. Olden. 2011. The state of crayfish in the Pacific Northwest. Fisheries 36(2):60-73. http://www.aquaticnuisance.org/wordpress/wp-content/uploads/2011/03/Fisheries_2011_State_of_Crayfish.pdf.

Loughman, Z. J., and S.A. Welsh. 2010. Distribution and conservation standing of West Virginia crayfishes. Southeastern Naturalist 9(3):63-78. https://www.researchgate.net/profile/Zachary_Loughman/publication/232689227_Distribution_and_Conservation_Standing_of_West_Virginia_Crayfishes/links/02e7e52b1a3173c17f000000.pdf.

Martinez, P.J. 2012. Invasive crayfish in a high desert river: Implications of concurrent invaders and climate change. Aquatic Invasions 7(2):219-234. http://dx.doi.org/10.3391/ai.2012.7.2.008.

Maude, S.H., and D.D. Williams. 1983. Behavior of crayfish in water currents: hydrodynamics of eight species with reference to their distribution patterns in southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 40:68-77.

Pflieger, W.L. 1996. The crayfishes of Missouri. Missouri Department of Conservation, Jefferson City, Missouri.

Recsetar, M.S., and S.A. Bonar. 2015. Effectiveness of two commercial rotenone formulations in the eradication of Virile Crayfish Orconectes virilis. North American Journal of Fisheries Management 35:616-620. http://dx.doi.org/10.1080/02755947.2015.1017127.

Riegel, J.A. 1959. The systematics and distribution of crayfishes in California. California Fish and Game 45(1):29-50.

Ruiz, G.M., P.W. Fofonoff, J.T. Carlton, M.J. Wonham, and A.H. Hines. 2000. Invasion of coastal marine communities in North America: Apparent patterns, processes, and biases. Annual Review of Ecological Systematics 31:481-531.

Schuster, G.A., C.A. Taylor, and J. Johansen. 2008. An annotated checklist and preliminary designation of drainage distribution of the crayfishes of Alabama. Southeastern Naturalist 7: 493–504.

Schwartz, F.J., R. Rubelmann, and J. Allison. 1963. Ecological population expansion of the introduced crayfish, Orconectes virilis. Ohio Journal of Science 63(6):266-273.

Sheldon, A.L. 1989. A reconnaissance of crayfish populations in western Montana. Montana Department of Fish, Wildlife and Parks.

Taylor, C.A., G.A. Schuster, and D.B. Wylie. 2015. Field guide to crayfishes of the Midwest. Illinois Natural History Survey, Champaign, IL.

Simmons, J. W., and S. J. Fraley. 2010. Distribution, status, and life-history observations of crayfishes in western North Carolina. Southeastern Naturalist 9(sp3):79-126. http://dx.doi.org/10.1656/058.009.s316.

Smithsonian Institution. 2014. National Museum of Natural History specimen collections. Accessed via GBIF data portal, http://www.gbif.org/dataset/5df38344-b821-49c2-8174-cf0f29f4df0d. Accessed on 10/27/2016.

Taba, S.S., J.R. Murphy, and H.H. Frost. 1965. Notes on the fishes of the Colorado River, near Moab, Utah. Proceedings of the Utah Academy of Science 42(2):280-283. http://www.nativefishlab.net/library/textpdf/13441.pdf.

Taylor, C.A., G.A. Schuster, and D.B. Wylie. 2015. Field guide to crayfishes of the Midwest. Illinois Natural History Survey, Champaign, IL.

Taylor, C.A., G.A. Schuster, J.E. Cooper, R.J. DiStefano, A.G. Eversole, P. Hamr, H.H. Hobbs III, H.W. Robison, C.E. Skelton, and R.F. Thoma. 2007. A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32(8):372-389. http://fl.biology.usgs.gov/pdf/AFSESCCrayfish3208.pdf.

Thoma, R.E., and R.E. Jezerinac. 2000. Ohio Crayfish and Shrimp Atlas. Ohio Biological Survey Miscellaneous Contribution, Columbus, OH: 9.

USGS BioData. 2017. Aquatic Bioassessment Data for the Nation. https://aquatic.biodata.usgs.gov. Accessed on 06/22/2017.

USDA. 2014. Crayfishes of Mississippi: Crayfish Distribution Map: Orconectes (Gremicambarus) virilis. https://www.srs.fs.usda.gov/crayfish/distmaps/CFDistMap124.pdf.

Virginia Fish and Wildlife Information Service. 2016. Occurence chapter for Crayfish, Virile (070119). Virginia Department of Game and Inland Fisheries. http://vafwis.org/fwis/booklet.html?Menu=_.Occurrence&bova=070119&version=17101. Accessed on 10/27/2016.

Author: Durland Donahou, A.

Revision Date: 11/13/2017

Peer Review Date: 12/8/2017

Citation Information:
Durland Donahou, A., 2018, Faxonius virilis (Hagen, 1870): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=215, Revision Date: 11/13/2017, Peer Review Date: 12/8/2017, Access Date: 1/16/2018

This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logoU.S. Department of the Interior | U.S. Geological Survey
URL: https://nas.er.usgs.gov
Page Contact Information: Pam Fuller - NAS Program (pfuller@usgs.gov)
Page Last Modified: Thursday, January 04, 2018

Disclaimer:

The data represented on this site vary in accuracy, scale, completeness, extent of coverage and origin. It is the user's responsibility to use these data consistent with their intended purpose and within stated limitations. We highly recommend reviewing metadata files prior to interpreting these data.

Citation information: U.S. Geological Survey. [2018]. Nonindigenous Aquatic Species Database. Gainesville, Florida. Accessed [1/16/2018].

Additional information for authors