Impact of Introduction: During earlier stages of colonization Salvinia minima demonstrates exponential growth rates (Gaudet, 1973), which may be just as high as those of Salvinia molesta. In Texas and Louisiana, S. minima typically occurs in dense, expansive populations and is known as a very troublesome weed. At Lacassine Bayou, southwestern Louisiana, plants completely blanket a waterway measuring 19.3 km long and 110 m wide (Jacono et al 2001). Mats in Louisiana have been measured as thick as 20 - 25 cm (Montz 1989).
Clatworthy and Harper (1962) studied the competition among three species of duckweed, Spirodela polyrrhiza, Lemna gibba, Lemna minor and, the single temperate species of Salvinia, S. natans. In mixed cultures, they found that Lemna gibba and Salvinia natans were able to actually thrust aside Spirodela polyrhiza and Lemna minor. On the other hand, Lemna minor and Spirodela polyrrhiza coexisted without dominating each other. The authors correlated success in competition not with growth rate in pure culture, but rather with morphological characteristics. The presence of aerenchyma in Lemna gibba and the strong connecting rhizome between the fronds in Salvinia, as well as the stiff hairs of Salvinia, enabled these two species to ride over and displace the thinner, flat fronds of the others (reviewed in Landolt 1986). It should be noted that Salvinia natans is smaller and more delicate than S. minima.
An eight-year study at Jean Lafitte National Historic Park, Louisiana, found complete displacement of native Lemna species by Salvinia minima. (T. Doyle, LA, pers. comm.). The Lemnaceae (duckweeds) contain high protein content and are important food sources for waterfowl.
An investigation of competition among Salvinia minima, Spirodela [Landoltia] punctata (G.F.W. Mey.) C.H. Thompson and Azolla caroliniana Willdenow in north Florida found Salvinia minima dominating during the summer months (Dickinson and Miller 1998). Later in the season, S. minima was impacted by flooding and freezing and Spirodela punctata became the most abundant species (Dickinson and Miller 1998). Also introduced to North America, Spirodela punctata shows greater cold tolerance than Salvinia minima by extending to more northern temperate latitudes (Landolt 1986).
Like Salvinia molesta, S. minima is vulnerable to conditions of salinity. Biologists along the coast of southeastern Texas find Salvinia minima in their coastal study sites only during wintertime, when freshwater outflow is high and salinity measurements decline to 4 – 7 ppt. They regularly control Salvinia minima, and improve waterfowl habitat, by opening gates to allow saline water from the Gulf of Mexico into the bayous (Kirk Blood, Texas Parks and Wildlife Department, Port Arthur, Texas, pers. comm.).
During August, on the Waterhole Branch of the Fish River, Alabama, Salvinia minima was registered as growing well with surface water salinity levels at 4 –5 ppt. (Scott Phipps, Weeks Bay National Estuarine Research Reserve, AL, pers. comm.).
References: (click for full references)
de la Sota E.S. 1976. Sinopsis de las especies Argentinas del genero
Salvinia Adanson (Salviniaceae - Pteridophyta). (Synopsis of the Argentine species of the fern-genus
Salvinia Adanson(Salviniaceae).) Bol. Soc. Argent. Bot. 17. (1-2): 47 - 50.
Clatworthy, J.N. and J.L. Harper. 1962. Comparative biology of closely related species living in same area. 5. Inter- and intraspecific interference within cultures of Lemna spp. and Salvinia natans, J. Exp. Bot. 13:307–324.
Dickinson, M. B. & Miller, T. E. 1998. Competition among small, free-floating, aquatic plants. American Midland Naturalist, 140, 55–67.
Fernald, M.L., 1950. Gray’s Manual of Botany a handbook of the flowering plants and ferns of the central and northeastern United States and adjacent Canada. 8th (Centennial) ed. American Book Company, New York.
Haynes, R.R. and Jacono, C.C., 2000. Status of Salvinia (Salviniaceae) in Alabama. Castanea 65:225–227.
Jacono, C.C., Davern, T.R. and Center, T.D., 2001. The adventive status of Salvinia minima and S. molesta in the southern United States and the related distribution of the weevil Cyrtobagous salviniae. Castanea 66 (3):214–226.
Landolt, E. 1986. The family of Lemnaceae - a monographic study. Vol.1. In: Biosystematic investigations in the family of duckweeds (Lemnaceae). 2(71) :566.
Landry, G.P., 1981. Salvinia minima new to Louisiana. Amer. Fern J. 68:95.
Lawalree, A. 1964. Salviniaceae in Flora Europaea, vol. 1. In: Tutin, T.G. (Ed.), others with the assistance of P.W. Ball and A.O. Chater. University Press, Cambridge, pp. 24–25.
Mickel J.T. and Beitel J.M. 1988. Pteridophyte flora of Oaxaca, Mexico. ((Memoirs of the New York Botanical Garden, 46)). Bronx: New York Botanical Garden 568p.
Montz, G. N. 1989. Distribution of Salvinia minima in Louisiana. In Proc. 23rd Annual Meeting, Aquatic Plt Control Res Prog., 14-17 November 1988, West Palm Beach, FL, Misc. Paper A-89-1, USACOE, Waterways Experiment Station, Vicksburg, MS.:312-316.
Nauman C. E. 1993. Salviniaceae. Pp. 336–337, in Flora North America Editorial Committee. Flora of North America vol. 2. Pteridophytes and Gymnosperms. Oxford University Press, Oxford.
Proctor, G.R., 1989. Ferns of Puerto Rico and the Virgin Islands. Memoirs of the New York Botanical Garden, vol. 53. Bronx, New York.
Schneller J.J. 1980. Cytotaxonomic investigations of Salvinia herzogii de la Sota. Aquatic Bot. 9. (3): 279 - 283.
Small, J.K., 1931. Ferns of Florida: being descriptions of and notes on the fern-plants growing naturally in Florida (Illustrated). The Science Press, New York.
Stoltze, R.G., 1983. Ferns and fern allies of Guatemala. Part III. Marsileaceae, Salviniaceae, and the fern allies. Fieldiana Bot. 12:10–13.
Weatherby, C.A., 1921. Other records of Salvinia natans in the United States. Am. Fern J. 11 (2):50–53.
Weatherby, C.A., 1937. A further note on Salvinia. Am. Fern J. 27:98–102.
Wunderlin, R. P., B. F. Hansen and E. L. Bridges 1995. Atlas of Florida Vascular Plants. http://www.usf.edu.
Zolczynski, J., and Eubanks, M.J., 1990, Mobile delta submerged aquatic vegetation survey 1987: Mobile, Alabama Department of Conservation and Natural Resources and U.S. Army Corps of Engineers, Mobile District, 32 p.
This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.