† Populations may not be currently present.
Ecology: The shimofuri goby is primarily feeds on benthic invertebrates, including ostracods, copepods, isopods, amphipods, oligochaetes, polychaetes, and mysids (Matern 1999; Matern and Brown 2005). Other introduced species, including the hydroid Cordylophora caspia and cirri of the barnacle Balanus improvisus, comprise a large portion of the diet of T. bifasciatus (Matern and Brown 2005). Shimofuri gobies can tolerate a wide range of temperature and salinity values. They exhibit thermal tolerances greater than those of most native fishes in the San Francisco Estuary, and exhibit salinity tolerances well-suited to salinities found throughout most of the San Francisco Estuary (Matern 1999, 2001).
Spawning in the shimofuri goby generally occurs from March to September in oligohaline (up to 19 ppt.) to fresh water (Matern 1999; Wang 2011). Males build and guard nests inside of cavities with hard interior surfaces, such as oyster shells, crevices, logs, or cans/bottles (Matern 1999; Wang 2011). Reproduction occurs multiple times throughout the season (Matern 1999). Maturity is reached in 1 year, with a maximum longevity of 2 years (Matern 1999).
Impact of Introduction: A study conducted by Meng et al. (1994) found that yellowfin gobies prey on the eggs and larvae of the introduced chameleon goby Tridentiger trigonocephalus. However, their research was conducted in Suisun Bay, an area known to be in the range of the shimofuri goby and not the chameleon goby (Fleming, personal communication). Therefore, it is actually the shimofuri goby that eats the eggs of the chameleon goby. Meng et al. (1994) also suggested this goby may be responsible, at least in part, for the chamelon goby's decline in the San Francisco Bay estuary. However, Fleming (personal communication) disagrees. He believes it is unlikely the shimofuri goby has been in the Bay long enough to have and impact on the chameleon goby's population. Shimofuri gobies likely compete with native species for Corophium amphipods, which are seasonally abundant in winter and comprise a major prey item of tule perch (Hysterocarpus traski), Sacramento sucker (Catostomus occidentalis), prickly sculpin (Cottus asper), staghorn sculpin (Leptocottus armatus), and starry flounder (Platichthys stellatus) (Feyrer et al. 2003). While Young et al. (2017) found that Shimofuri Goby are habitat generalists in the San Francisco Estuary, they claim the gobies do not have a high impact on the native Prickly Sculpin due to a lack of habitat overlap.
References: (click for full references)
Akihito and K. Sakamoto. 1989. Reexamination of the status of the striped goby. Japanese Journal of Ichthyology 36(1):100-112.
Feyrer, F., B. Herbold, S.A. Matern, and P.B. Moyle. 2003. Dietary shifts in a stressed fish assemblage: consequences of a bivalve invasion in the San Francisco Estuary. Environmental Biology of Fishes 67:277-288.
Matern, S.A. 1999. The invasion of the shimofuri goby (Tridentiger bifasciatus) into California: establishment, potential for spread, and likely effects. Doctoral dissertation. University of California, Davis, CA.
Matern, S.A. 2001. Using temperature and salinity tolerances to predict the success of the shimofuri goby, a recent invader into California. Transactions of the American Fisheries Society 130:592-599.
Matern, S.A., and L.R. Brown. 2005. Invaders eating invaders: exploitation of novel alien prey by the shimofuri goby in the San Francisco Estuary, California. Biological Invasions 7:497-507.
Matern, S.A., and K.J. Fleming. 1996. Invasion of a third Asian goby species, Tridentiger bifasciatus, into California. California Fish and Game 81(2):71-76.
Meng, L., P.B. Moyle, and B. Herbold. 1994. Changes in abundance and distribution of native and introduced fishes of Suisun Marsh. Transactions of the American Fisheries Society 123:498-507.
Raquel, P.F. 1988. Record of the chameleon goby, Tridentiger trigonocephalus, from the Sacramento-San Joaquin Delta. California Fish and Game 74(1):60-61
Sommer, T, B. Harrell, M. Nobriga, R. Brown, P. Moyle, W. Kimmerer, and L. Schemel. 2001. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture. Fisheries 26(8):6-16.
Swift, C.C., T.R. Haglund, M. Ruiz, and R.N. Fisher. 1993. The status and distribution of the freshwater fishes of southern California. Bulletin of the Southern California Academy of Science 92(3):101-167.
Wang, J.C.S. 2011. Fishes of the Sacramento-San Joaquin River delta and adjacent waters, California: a guide to early life histories. Tracy Fish Collection Facility Studies, vol. 44. U.S. Bureau of Reclamation, Mid-Pacific Region and Denver Technical Service Center.
Young, M.J., K.A. Berridge, T. O'Rear, P.B. Moyle, and J.R. Durand. 2017. Habitat partitioning by native and alien fishes and decapods in novel habitats of the upper San Francisco Estuary. Biological Invasions 19(9):2693-2710. https://link.springer.com/article/10.1007/s10530-017-1477-2.
This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.